-~ w

N67 18103

. =
—

T

(CATEGORY)

(THRU)
o

v

(PAGES)

57

(ACCESStON NUMBER)
(NASA CR OR TMX OR AD NUMBE

T

209 WHOA ALITIOVA

THE UNIVERSITY OF MICHIGAN

R COLLEGE OF ENGINEERING

Department of Aeronautical and Astronautical Engineering

Technical Report‘ l‘

: : s
) T ‘

THE USE OF STATISTICAL DEPENDENCE BETWEEN |

~ DATA SAMPLES IN BINARY PCM DEMODULATION
5
R g GPO PRICE §
o o ‘ ‘ CFSTI PRICE(S) $
- S James Kinard Strozier
- .\ o - '» » Hard copy (HC) Wz
| | S | Microfiche (MF)
i ff 653 July 65
.? ’NASA Research Grant NsG—'Z-‘59' ,
L ~ ORA Project 02905 o

o

administered through:

- OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

’ NoVember\ 1966



THE USE OF STATISTICAL DEPENDENCE
BETWEEN DATA SAMPLES IN BINARY
PCM DEMODULATION

by
James Kinard Strozier

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in the
, University of Michigan

f 1966

Doctoral Committee:

Professor Lawrence L. Rauch, Chairman
¢ Professor Elmer G. Gilbert
Professor Robert M. Howe
Professor William A. Porter
Professor William L. Root



T
i

Acknowledgements

A dissertation of this nature would not be possible without the
assistance and encouragement of many other people. The author is
particularly indebted to the members of his doctoral committee, Pro-
fessors L. L.. Rauch, E. G. Gilbert, R. M. Howe, W. A. Porter and
W. L. Root, whose patience and helpful criticisms were invaluable.

I am especially grateful to Professor L. L. Rauch, who as chairman
of the committee gave me so much encouragement and assistance that

this work would be nonexistent without his help.

The author would also like to express his gratitude to the United
States Army and the United States Military Academy for making this
dissertation possible. In particular, I would like to thank Colonel E.
R. Heiberg, the Head of the Department of Mechanics, U.S.M.A., for
making the time available for me to complete this dissertation and for
his encouragement to do so. Special thanks are due Brig. Gen. H. R.
Fraser (Ret.), whose dynamic encouragement kept me going when the
progress was slowest, and the staff of the U.S.M.A. Academic Com-
puter Center, under the direction of LLt. Col. W. F. Luebbert, whose

advice and assistance in the programming were invaluable.

Last but certainly not least, the author would like to thank the
University of Michigan Computing Center for their assistance in utili-
zing their electronic computing facilities, Miss Linda Swenson for
her patience and help in preparing the draft manuscript, and Mr. John

Parsons for the excellent preparation of the final manuscript.

ii



Table of Contents

Acknowledgements
List of Tables
List of Figures
List of Appendices
Introduction
Chapter 1
Optimal Demodulation of Binary PCM Waveforms
Chapter 2

Performance Evaluation for the Optimal Demodulators

Chapter 3
Computer Simulation of the Optimal Demodulators
Chapter 4
Optimal Demodulator Performance
Chapter 5
Suboptimal PCM Demodulation
Chapter 6
Conclusions and Possible Extensions
Appendix I

Calculation of Correlation Coefficients for Butter-
worth Data

Appendix II

Generalization to Arbitrary Bit Waveforms
Appendix III

Computer Programs
Appendix IV

Computation Results

Bibliography

iii

Page
ii

iv

vi

11

18

29

50

69

74

77

79

105

129



INTRODUCTION

Due to the widespread use of pulse code modulation (PCM) for
data transmission, there is considerable interest in the improvement
of the demodulation process. Most present day demodulators demodu-
late a received PCM signal by considering one bit of each word at a
time, and therefore make no use of the statistical dependence between
data samples, although for reasonable interpolation errors, the re-
quired sampling rates are sufficiently high to give a high correlation
between samples in many applications. For example, it is shown in
Appendix I that when 6-bit words are used to transmit second order
Butterworth data, the required sampling rates are such that the cor-
relation coefficient between adjacent samples is greater than .98 and
the correlation coefficient between every second sample is greater
than .95. One would expect that such high correlation between data
samples could be used to improve the demodulation process. Smith
[s1, SZ]1 has shown that this high correlation between samples can be
used to improve the word-error performance of the demodulator that

minimizes the probability of an error in the demodulation process.

This dissertation will treat the use of statistical dependence be-
tween PCM data samples in several optimal and suboptimal demodu-
lators. Three optimal demodulators will be investigated: the mini-
mum error-probability (Pe) demodulator, the minimum mean-absolute
-error (MAE) demodulator, and the minimum mean-square-error
(MSE) demodulator. Three suboptimal demodulation schemes will also

be investigated.

The following restrictions and assumptions, which are essentially
those used by Smith [S1, S2], will be adhered to in this analysis. Only

single data sources will be considered, but the extension to multiple

!'Letter-number combinations in brackets refer to references listed in
the bibliography.



data sources is obvious. The analog data samples will be assumed to
come from a Gaussian random process with known autocorrelation.

The assumption of Gaussian data is immaterial in the general develop-
ment of the demodulators (Chapter 1), and becomes important only
when the simulation on the computer is begun (Chapter 3). As will be
apparent in Chapter 3, data samples from any random process could
be considered, provided there is a way to generate correlated samples
from the distribution on the computer and some way to evaluate the
multivariate probability for a given set of quantized data samples. The
channel noise will be considered additive only, and independent of the
transmitted signal. The noise is further assumed to be bandlimited,
white, Gaussian noise. Although this last assumption was made so
that analytic progress is possible, in practice the noise power spectrum
is essentially flat out to some arbitrarily high frequency and is band-
limited by the equipment. Therefore, the assumption of bandlimited

white noise is a reasonable one to make.

In evaluating the performance of the demodulators, the demodu-
lated signal will be compared with the quantized data sample that was
transmitted, rather than with the original analog data sample. This
is reasonable since quantization errors before transmission should not

be charged to the demodulator.



CHAPTER 1

OPTIMAL DEMODULATION OF BINARY PCM WAVEFORMS

The notation used is that indicated in figure 1-1. x(t) is the ana-
log data signal that will be transmitted using binary PCM signals. As
mentioned in the introduction, x(t) is assumed to be a stationary Gaus-
sian random process with specified autocorrelation function from which
are obtained the correlation coefficients pij between samples x;“ and
xJ’.“. The samples x*{t) of x(t) are quantized into discrete value data,
Y(t). This discrete-value data is then coded into serial binary PCM
signals, y(t). Gaussian white noise, n(t), is added in the transmission
process, so that the received signal z(t) is the sum of y(t) and n(t).

z(t) is then demodulated to get S?(t), the estimate of Y(t). The remain-
der of the process to get Q( t), will not be considered as part of the de-
modulation process in this dissertation, although it certainly plays an
important role in the overall data transmission system. The next-to-
last box in the block diagram is not labeled since in some cases (e.g.,
the minimum MSE demodulator) the digital-to-analog conversion is
accomplished in the demodulator, and in most actual systems the

A
sampled signal Q*(t) is taken equal to Y(t).

The binary PCM signal, y(t), will be considered to be a series of
equal energy waveforms g (t) or g,(t), g,(t) representing a ""yes" bit,
and g,(t) a '"'no" bit. This is easily generalized to other bit waveforms
(See Appendix II). Let TW be the time required to transmit one PCM
word, and let m be the number of bits in each word. Then each "word-
time'', TW’ is divided into m equal parts called "bit-times'" and de-
noted by TB.
In an m-bit binary code there are 2™ quantization levels, or 2™

possible values of Y. For simplicity we take these values of Y to be



Data |x(t) X *(t) . Y(t) pcMm |y(t)
Source ampler Quantizer —— Coder
n(t)
z(t)

\

A

2(t) L (t) ()
— Demodulator Interpolator |——m

Figure 1-1. System Block Diagram



the integers k =0, 1, ..., 2™ 1 and scale x(t) accordingly. Let the
joint probability of the quantized value, Yj’ of the jth sample and the
received signal z(t) be given by

ijz(k, z(t)) = £

Yj-|z‘k'z“” £ (2(t)

= fZ,Y_(z(t) lk)fY.(k)
J J
where the probability is discrete in k and a multivariant density in a

time sampled representation of z(t).

Let us now consider the three types of optimal demodulators that
will be analyzed in this dissertation. The minimum error-probability
demodulator minimizes the average probability of error, Pe' If the
demodulation operator is given by S?.[z(t)], then the error-probability

for a particular z(t) is 1 - fY 'Z(S?j[z(t)]lz(t)) and
J

P
e

{a - fy (3, [20 ] |20 (2(0) a2

2 J

g‘ A
1 - ! ijlZ(Yj[z(t)]Iz(t))fz(z(t)) dz.
V4

A
Clearly, this is minimized by choosing Yj[z(t)] to maximize

fY IZ(S/(\'j[z(t)]iz(t)) for every z(t). Thus the minimum error-probability
J
demodulator is described by
Y. [2(t)] = k where k maximizes fy kD). (1-1)
: j
This le also maximizes the probability of correct demodulation and it
is often called the maximum inverse-probability demodulator.
The mean absolute error (MAE) of a demodulator is given by

MAE = E[le - Qj[z(t)]l]
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where E[ ] denotes the expectation operation. In terms of the previous

probabilities

2™ A
MAE =§ 2 |k -Y.[20]]f, (k, z(t) dz
5 k=0 ] X2

m

27-1 A
= ZS' kZ:;o |k - Yj[z(t)] [ijlz(klz(t))fZ( z(t)) dz.

Clearly, this is minimized by choosing S?j[z(t)] to minimize
2™ A
2 k- Y. lA0] ]t | (K]a(t)
Y.|z
o j il

. A
for every z(t). It is well known [B1] that the required Yj[z(t)] is given
by the median of the conditional distribution fY lz(klz(t)) where the

]

median of a real-valued random variable v is defined as follows. Let

A be the real line, let

1/2}
1/2}

inf{a€A|P(v§ a)

v

my

m, = sup{a € A|P(v 2 a)

v

and let I be the closed interval [m,, m,]. Then any m €1 is called a
median of the random variable v. The set of z(t) giving non-unique
medians has probability zero in this application. Thus the minimum

MAE demodulator is described by

7 _ .
sz[z(t)] = median of ijlz(klz(t)). (1-2)

The mean square error (MSE) of a demodulator is given by

m

2 -1
N 2
MSE y kzz;o (k - ¥ [a(1)]) ij,Z(klz(t))fz(zm) dz

A
This is minimized by choosing Yj[z(t)] to minimize



m
2 -1 A )
kZ:/O (k - Yj[z(t)]) fYJIZ(klz(t))

A
for every z(t). This is accomplished by taking Yj[z(t)] equal to the
mean of the conditional distribution

m
A 2 -1
Yjs[z(t)] = ké;) k ijlZ(klz(t)). (1-3)

Equations 1-1, 1-2, and 1-3 all involve the conditional probability,

fY lz(klz(t)) . Smith has derived an expression for this conditional prob-
i

ability [ S1] and this derivation is repeated here for convenience. In
the following, the first subscript refers to the word position in the PCM
signal sequence, and the second subscript to the bit position in the PCM
word (e.g., Yip is the transmitted signal during the rth bit time of the

ith word time).

The conditional probability of the sequence of quantized data

samples, Y,, ..., Yn given z,, ..., z, is given by

o (Yoo Y21 n2)

fz(zl, cees zn)

fYIZ(Yl’ PPN Yn'Z]: .oy Zn) =

fZ,Y(zl, .. .,znlYl, s YY)

= (1-4)
fz(zl, e o zn)
Since there is a unique correspondence between Yi and s
= cees s e es 1-
fZIY(Zl s ey anYl s e s Yn) ley(zp znly1 yn) (1-5)

The channel noise, n, was assumed additive and independent of the
transmitted signal so that

ley(zl,..., znlyl, oy )Tz Yz my ) (1-6)



With proper sampling, bandlimited white Gaussian noise is independent

from sample to sample. Therefore,

fn(zl R STRERPE D A =fn(zl -yl)-”fn(:zn -y, (1-7)

Woodward has shown [W1] that
1 exp{ ! g (z y)zdt}» (1-8)
ST .Y, -
o - Zcrn 2 i i
- R w

Expanding the integral in equation 1-8 and noting that | yiZ dt is a

Tw

constant for the equal energy signals that we are considering and

fn( 2 T yi)

f z; dt is a function only of z,, we have

Tw

1
fn(zi - yi) = Kl(zi) exp{(?n- S‘ Ziyidt} (1-9)

Tw

where Kl(zi) is some function of Z; -
The integral in equation 1-9 can be expanded as
m
= dt 1-10
S ziyi dt rz:‘l 51 1r le‘ ( )

Tw B

Using equations 1-6 through 1-10, equation 1-5 can be written as

IY(ZI,...,ZnIYIJ" Y)_K(Z)ﬂexp {_Z_ZSV 1r 1I‘ }

n r=i
T (1-11)
where K,(z) is a function of the received signals, z,, ..., Z,-
The desired conditional probability is given by
fY lz(klz(t)) =y, 5 > - T fYIz(Y"""Yj—l’
h] YU Y. eUY. €U Y €U
]! jh n
K, Yj+l,...,Ynlzl,...,zn) (1-12)



where U is the set of all possible values (0, 1, ..., 2™ - 1) of Yi'

Denoting by yi(k)r the rth bit of the PCM code corresponding to
Yi = k and noting that fz(z,, ...s 2y) is only a function of z, we can com-

bine equations 1-12, 1-11, and 1-4 to get

ij'Z(klz(t))= DI 27 ... > P Y1, Y,

Y,€U Y €U Y €U Y €U 3
Jj-1 jt n

i:]_ nr_l
itj B
>
t
{OTI’Z; r:lS\ erJ(k)r }
Ty
2;-.1 2Moar 2™ 2™y
= K;(2) el 2 . 0 P S ' P 20
60 4 =04 =0 g0 Y ek n

(1-13)

Equations 1-1, 1-2,1-3, and 1-13 completely specify the three
optimal demodulators. First the 2™ values of fY-lz would be calculated
from equation 1-13. The minimum PE demodulator would simply choose
the value of Yj that corresponds to the largest value of the conditional
probability, ij |z The mi/l\aimum MAE demodulator would sum in order
the values of ijIz’ taking sz to be the value of Yj that corresponds to
the value of the conditional probability that makes the sum equal to or
just go past .5. The minimum MSE demodulator would perform the
operation indicated by equation 1-3 to get 93.3. It should be noted that

the minimum PE and MAE demodulators can only select Qj to be one of



10

the possible values of Yj’ while this is not true for the minimum MSE

demodulator.



CHAPTER 2

PERFORMANCE EVALUATION FOR THE OPTIMAL
DEMODULATORS

In Chapter 1 the equations describing the three optimal demodu-
lators that we are considering were developed. To evaluate the per-
formance of these demodulators, it is necessary to have some criteria
of goodness with which to measure their performance. The two most
widely used criteria are the MAE and the MSE (the root-mean-square-
error (RMSE) is often used in place of the MSE), and these two measures

of demodulator performance will be used in this analysis.

The error in the demodulation of the PCM signal during the jth

word time, ej, is given by

A
e.= Y. -Y,. (2-1)
i i T
and
MAE - E{ [e;[} = B{|Y, - s?jl} (2-2a)
MSE = E{eJ% }o= E{(Yj - {?j)z} (2-2b)

where, as before, E represents the expectation operator. For simpli-
city, we will consider only the MAE in what follows, noting that there is

a parallel development for the MSE. Equation 2-2a can be written as

[» o]
MAE = 2, y le —Ylf ,zl,...,zn)dzl,...,dzn
Y€U_w -0
00 0

20 ) S’ ‘SﬂlY Qlf (Yl,..., ,zl,...,zn)dzl,...,dzn

YU Y €Ul -®

11
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0

o0
= S S\IY Ylf lY(zl,...,z Y, ....Y

Y1€U Y €Ule o
'le, ...,danY(Yl,..., Yn)

Since Z, 5V + n., and there is a one-to-one correspondence between Yi
and Yy integration over the z space is equivalent to integration over the
n space. Using the independence of y and n,

> o] [se]

MAE = 2, - y S.[IY Ylf (ny,...,n)]ldn;, ..., dn_
Y,€U Y€U_°° %

YL, Y) (2-3)

where {?j is a function of Y,, ..., Yn and n, ..., n. Since n, can be
broken down into m components, this expression represents 2
summations of an n-m dimensional integral. Attempts to analytically
evaluate equation 2-3 prove fruitless, even in the most analytically

tractable case of the minimum MSE demodulator.

Numerical integration of equation 2-3 could be used. If k sub-
intervals of each n,  were used in the integration, then this equation
would represent at least knm evaluations of the quantity in the brackets,
each of which includes a determination of S/(\’ by equations 1-13 and 1-1,
1-2, or 1-3. Since there are 2°°0 possible Jcombinations of the Y's,

this is a minimum total of 2" .M. ym(n-1) (zmn-m) , nm

*m or m2
calculations for one demodulator at one set of correlation coefficients
and signal-to-noise ratio. Forn = 2 and m = 6, this is I, 572, 864k "™
calculations. It is easy to see that numerical integration is practical

only in trivial, non-interesting cases.

Kahn [K1] points out that Monte Carlo simulation offers a way to



13

considerably reduce the number of calculations to evaluate expressions
such as equation 2-3. In the Monte Carlo simulation, a number, N, of
sets of samples of nir and Yi’ i=1,...,n, r=1,...,m, are picked
according to the probability density function fn and probabilities fY'
Using this set of samples, the absolute error, Iej |, is calculated by
use of the equations developed in Chapter 1. Denoting by Ie:i Ik the ab-
solute error corresponding to the kth set of samples, the MAE can be
estimated by

A 21
MAE; = & le. |

ik (2-4)

"Mz

1

Since the expected value of each Iej ,k is the MAE, this estimate is un-
biased. A measure of the accuracy of the estimate is given by the

variance, V, which is given by

\%

MfSIE1 E{[l\/IA\E1 - E(MA\El)]?‘}
- E{(MAE, - MAE)?}

A A
E{(MAE,)? - 2MAE, MAE + MAE?}

E{(MAE,)?} - MAE?

lN N ,
E{l\?z 5 le.lklejlz} - MAE

kzl {=1 J
L(Zle kD 2
= E{—— le. || + le. | le.|>} - MAE?
N* k=1Jkk=12=1 JkTIN
k#4

Since by the selection method sets of samples are independent from
other sets

v -1

1 2 N
"N‘E{Iej| b+ N

MAE? - MAE?

A
MAE,

v

it

MAE, —%I-[E{Iejlz} - MAE?] (2-5)
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The standard deviation of the estimates, O'M./QE, equals the square
root of the variance, so ¢ varies according to 1/'\[15 . Consequently, any

accuracy that is desired can be obtained by taking N sufficiently large.

The number of samples that must be taken for a given accuracy
can be reduced by using more efficient (from the Monte Carlo simulation
viewpoint) estimators. For example, the absolute error, lej |, can be
estimated by

2™
A A
Iejl = > |2 —lefY IZ(zlz(t)) (2-6)
2 =0 i

A
Since lejl probably has less dispersion than ]ej |, it should be a more

efficient estimator for the Monte Carlo simulation, with
N
A 1
MAE, = — 2, |€.| (2-7)
N K= ik

Since the expected value of 'éj Ik is equal to the MAE, this estimate is

also unbiased and its variance is given by

1 A 2 2
VMAE, N[E{(MAEZ) } - (MAE)“] (2-8)
If the values of f , (2 [z( t)) are available in the demodulator (as they

will be with the optimal demodulators) then this new estimate (MAE )

is more efficient and should be used.

Kahn [K1] also points out that the required number of samples
can be further reduced by "importance sampling'. Smith used this
technique in his work to reduce his overall computer time to a reason-
able amount [S2]. In importance sampling, instead of choosing samples
according to the probability density function fn and probability fY’ samples

are selected according to a modified probability density function f+

(Y, ..., Yn’ Ny, ..., nn). Equation 2-3 becomes
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o0 o0

MAE = 2, ... 2, S‘S‘

€ e ey S ¢ P
VEU Y Uk o I (Y, Y .n n )

Iejlfn(nl, oYy LY
+

+
-fYn(Yl,..,Yn,nl,...,nn)dnl,...,dnn (2-9)

Denoting by { }k the value of the expression in braces corresponding to

the kth set of samples, the estimate of the MAE becomes

N Je.|]f f
A
MAE, =iZ {#X} (2-10)
Nk=st U ¢f kg
Yn
fY f
Each sample of the absolute error is therefore weighted by
f
Yn
It will be noted that this estimate is still unbiased, and the variance is
given by
‘ f £ 2
1 Iej, Y 'n
A = e— —_— - 2 -
VMAE3 N[E{( f+ >} (MAE) (2-11)
Yn

Kahn points out that if

f+ _ leijY frl
Yn MAE

then the variance is zero and only one sample is needed to accurately
determine the MAE. However, finding this optimal f;n requires know-
ing in advance the quantity, MAE, which we want to determine, but this
shows that theoretically it is possible to select f;n such that the var-
iance of the estimate is reduced considerably.

If importance sampling can be used without incurring large in-
creases in program complexity and computer time to compute each
sample value of the absolute error, then it can be a valuable aid in the

efficient estimation of the MAE by Monte Carlo methods. It should be

noted that lé\jl can be used in place of Iejl in equations 2-10 and 2-11
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when it is available.

Calculation of the variance requires knowledge of the quantity we

are trying to estimate. However, the variance can be estimated by
N -
A 1 2 A 2
VMAE, - ﬁ[l 2 Iej . - (MAE,) ] (2-12)

G JUTAS.
where Iléj lf{ nl, or ( 2( is used in place of

2
Iej lk depending on Wh1ch estimate we need the variance of.

These equations can be summarized as

A
AE, = le.| =]Y,-Y.] (2-13a)
i I
2™ .
AE, = 2 - [ (2]zt) (2-13D)
2 1e- Y|z )
ff
AE, - AE, -2 (2-13c)
fYn
£ f
AE, =AE, -1 (2-13d)
fYn
A 1 N
MAE, = — 2, (AE) (2-14)
i N & 'k
k=1
VoA=L A MAE, “ 2-15
VMAEi— kE(E) - ) (2-15)
and the parallel MSE equations by
A
SE, =(Yj-YJ.)z (2-16a)
2™

A
SE, =7, (¢ - yj)"‘ij,Z(zlz(t)) (2-16D)
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f f
SE,; = SE, 5_‘; n (2-16¢)
fYn
f_f
SE, =SE, Z L (2-16d)
fYn
A _ 1 g
MSE, = & - (SE), (2-17)
k=1
N .
A 1 1 2 A 2
A = | —— - -
VMSEi N[N kzz}l(SEi)k (MSE,) J (2-18)

Due to difficulties in evaluating the MAE and MSE of the demodu-
lators investigated by analytical or numerical methods, a Monte Carlo
simulation was used to estimate these quantities. The specific way of
doing this for the optimal demodulators is discussed in the next chapter.
Monte Carlo methods were also used for two of the suboptimal demodu-

lators considered and are discussed in Chapter 5.



CHAPTER 3

COMPUTER SIMULATION OF THE OPTIMAL DEMODULATORS

Equations 1-1, 1-2, 1-3 and 1-13 involve operations ideally suited
to digital computers. As pointed out in Chapter 2, a Monte Carlo
simulation appears to offer the best approach to the evaluation of the
MAE and MSE for the three optimal demodulators that we are consider-
ing.

To accomplish this simulation, the data samples, x;k, cees x: ,
are picked from the proper distribution, quantized into the digital sig-
nals, Y,,..., Yn, and the Yi are then coded into binary PCM signals.
Noise samples are selected from the proper noise distribution and
added to the PCM signals to form the received signal. The 2™ values
of fy l are calculated by use of equation 1-13, and these are used in
equatlons 1-1,1-2, and 1-3 to get 'Q for each demodulator. Equations
2-13 and 2-16 are used to calculate the estimators for the absolute
error and the square error. This procedure is repeated N times and
equations 2-14 and 2-17 are used to calculate the MA{QE and MSAE . The
accuracy of these estimates can then be estimated from equations 2-15

and 2-18.

As was pointed out in the introduction, the data samples are
assumed to be normally distributed, with a specified correlation be-
tween samples. The following procedure was used to generate the data
samples on the computer. Forn = 2, i.e., two words considered at a
time by the demodulator, the demodulator estimates Y, using z, and z,.

x;et is picked from a normal distribution’ with mean m., and standard

' Most large computer installations have random number generators in
their libraries, both for uniform and normal distributions. Such was
the case at the University of Michigan Computer Center where the
simulation of the optimal and suboptimal demodulators was done.

18
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deviation Ty Then x;_k is picked from the conditional probability dis-
tribution of x;k given x;k . For joint normal data samples with corre-

lation coefficient p, the conditional probability density function is given

by

FOTON fx(xik’ x=2k)
fx Ik (xz2[x;) =
2 X
fX(X] )
] (x;k—mY)Z-Zp(xT—mY)(x;k—mY) +(x;f-mY)2}
ZTI'O'ZY 1-p? 20-Y(1 P%)
- B3 2
Epea— eXp{'—z———
'\/Z_Tr O'Y 2'O-Y
sk k42
] [x; - (mg - pm +px)]
. exp {- —— } (3-1)
'\/; Ty N1 - p? 0—Y P

Therefore, x, is selected from a normal distribution having mean

N1 - p?

_ _ + sk . . _
m, pmy + pX, and standard deviation oy

For n = 3, the demodulator estimates Y, given z,, z,, and z;.
x; is selected from a normal (m._, o) distribution, and x; and xi are

Y

then selected from the normal distribution having a mean of m_, - pm

Y Y
+ pX, and a standard deviation of oy N1- p2 The correlation coeffi-

cient between x;* and xf and between x}_k and x3 is p. The selection
method fixes the correlation coefficient between x;': and x;::, P13, and it

is determined as follows.

E sk b _ 2
i [Xl X3] mY
P13 poy

Y

Now

on 0
Elx} x1] = S‘ yxf< x5 £ (x1, xa) dx} dx¥
~00 -00

TIn the majority of the applications of PCM demodulation there will be
no constraint to operate without a time delay.
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Since
o]
£ ks = (oo o) ax
-00

and

fx(xi", X,,X3) = fxlyz(xiﬁlx;k, X3) fxly(xgcle) fx(x;f)

= fxfy(xik x?) fxly( x;klx:() fX(xf)

then

o0 00 o0

Elx; x3] = y g X, fxty(xi"lx;) dx, gx;‘ fxly(x;‘lx;‘) dxs fx(x;‘) dx,
-00 -—00 -00
[> e}

) 5 Elx)|x;] E[X;::lx;k]fx(x;:) dx;

-0

o0
sk 2 % sk
= S(mY(l - p) tpx,) f (x;) dx,
-0
o0

m% (1 - 2p+ p?) + 2m (1 - p)pS‘x;“f(x;‘) dx,

-0

o0

=00

Y( ptp%) ZmY(p p°) p(cY mY)

2

2 2
m:_ +
Py

Y

Consequently

The extension to higher values of n is obvious, but is not con-
sidered here because of the excessive computer time required to simu-

late the demodulation for n > 3, as will be obvious in Chapter 4.
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Two different size PCM words are considered, three-bit words
(m = 3) and six-bit words (m = 6). For six-bit words, the data samples
are quantized according to figure 3-la. Data samples outside the range
m, +2.6 oy are assigned values of 0 or 63 and the interior range is
divided into equal parts corresponding to the signals 1 through 62. For

six-bit words then,

mY=22_1 =31.5
m (3-2)
_ Y _ 31 _

oy 3¢ - 12.115

For three-bit words, the first three bits of the six-bit words are used.

Figure 3-1b results, with

m.. = 3.5
X (3-3)
I 1.515
°Y " 1.9803 .
The signal power per bit time, S2, is given by
1 1 2
S y gi(t)dt = T y g5 (1) dt (3-4)
B T B r
B B

A time average correlation, A\, between g, (t) and g,(t) is defined by

M- et | & g (3-5)
B

Tg

The root-mean-square (RMS) signal-to-noise ratio, S/N, is defined as
the square root of the ratio of the signal power to the noise power in a

bandwidth equal to the bit rate, i.e.,
. 5z i ’TB S
S/N - 2/ - (3'6)
o /T o
n B n

Consider the exponential expression in equation 1-13,
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Figure 3-1b. Quantization Intervals, 3-bit Words
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1 &2 ;
exp {g rZ=1 § Zir(t)yi(z)r(t) dth (3-7)
T
B

This can be expanded to

n r=i

m
1
— +
exp {GZ 2 f(yir<t) B () 75 (0 dt}
B
where nir(t) is the noise waveform during the bit time, TB.

_ = [ 1 1
- exp 1{2 [ET g Yirl i)Vt + 5 § nir(t)yi(l)r(t)dtJ } (3-8)
" Ty " Ty ’

Consider the first part of the expression in the brackets in the above

equation.
—z for matched bits
n
! S (t) (t)ydt =
o2 J Yir Vitoyr TS
T I >— , for unmatched bits
B o
n
\

The second part of the expression in brackets in equation 3-8 is a ran-
dom variable since it is the integral of a random process, nir(t)' This
random variable has mean 0 and variance:

V = &—14— S g E{nir(t)yi(ﬂ)r(t)nir( T)yi(f)r( )} dtdr
nr T
B™B
1
_ 1 2
g 3 f Yiu)r(t)yi(z)r(v) o 8(t - 7)dtdr
nr T

B B
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Therefore, the expression in brackets in equation 3-8 reduces to

] (S/N)? + J, matched bits

? S\ yi(l)r(t) Zir(t) dt =
TB

MS/N)Z +J, unmatched bits

where J is a random variable with mean 0 and variance (S/N)%. Smith
[S2] points out that the computer simulation can be accomplished most
simply by using g, (t) = +S/N and g,(t) = - S/N and selecting noise
samples, denoted by vir’ from a normal (0, 1) distribution. For these
PCM waveforms N = -1. The generalization to arbitrary waveforms

and arbitrary \ is given in Appendix II. Equation 3-7 becomes

1 ) -—
exp {;i - § ZlI"yl (8)r jL - €xp Z (y )yl(l)r} (3-9)
T

RN

where y equals either a plus or minus S/N and v, is normal (0,1).
() ir

Therefore, after the quantization of x * into Y Y is coded into
a series of +1's. These are multiplied by S/N to form the yir's, and to
each of these products is added a sample from a Gaussian distribution
with mean 0 and standard deviation 1. This forms the quantity in paren-
thesis in the right side of equation 3-9, and the computer has all the

information that is needed to start the demodulation.

For the demodulation, fY(z1 s ey lj-l s Ky, £ 3 e e e IZn) is required.

j+
For samples from a Gaussian distribution that we are considering
fY(!zl,...,l._ . k, z 2)
g S S‘ S‘ ‘S fX(xl,...,xn) dxl--dxn
11 R R RE

J—l J +1 n
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where fX is the multivariate Gaussian density function and Rli is the
region where X, quantizes into li. For the computer simulation, suffi-
cient accuracy is obtained by taking the value of fx at the midpoint of
these regions, i.e.,

fx(yzl, ] k, ¢ )

fY j-1 jH n

il

Forn = 2,

2

~ul—er"-zmu—n@(k-mek—m@
ZO',ZY( 1-p?%)

fY(ll,k) = Ky exp
(3-10)

For n = 3, x, and x; were chosen to have a correlation coefficient p

with xz As shown before the correlation coefficient between x;k and x;k

is p®. For this case

fx(XI,XZ,X3) =f

X1 1X,,X3) f (x,,x
X1|X2»X3( %20 x3) x( 2s X3)

= fxl |X2(x1 lxz) fx(Xzs X3)

fx(xl »X,) fx(xz, X3)

F(x,)

Therefore

£, k) £,(k, £5)

Y
where fY(zl, k) and fY(k, £3;) are given by equation 3-10 and
(k - m)
f (k) = K5 exp{- ———— (3-12)
Y ZO'Y

It should be noted here that samples from distributions other than
a Gaussian distribution could be used in the computer simulation. As
mentioned in the introduction, a way of generating correlated samples
from the new distribution must be available for the computer. Most

large computers have available subroutines for generating pseudo-
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random numbers from a uniform or a Gaussian distribution. Kahn
[K2] discusses ways of using uniformly distributed random numbers to
generate samples from other distributions. In addition to generating
samples from the new distribution, a method must be available for

calculating fY(lZ1 s e e ey Zj-l , k,lzj_H 3 e s En) for use in the demodulator.

For small signal-to-noise ratios, the Monte Carlo simulation
gave reasonably accurate estimates of the MAE and MSE for the opti-
mal demodulators with a reasonable number of samples (and hence
reasonable lengths of computer time). However, for S/N larger than
1.414, the number of samples (and computer time) required for
reasonable accuracy became excessive. Importance sampling was
used to improve the convergence of the estimation and therefore, re-

duce the computation time to a tractable amount.

As pointed out in Chapter 2, the modified sampling distribution,

f;-{n’ should be taken proportional to lej lfon or (ej)szfn. These are
very complicated functions due to the complicated nature of the optimal
demodulators, but some indication of the approach to take to determine
a good but simple f;n can be gained by considering a simple example of
one-bit words taken two at a time (m = 1,n = 2). For this case Y, and
Y, can take on the values of 0 or 1. Letting v, and v, take on various
values, SE,f,, was plotted for the different combinations of Y, and Y,.
Figure 3-2a shows the results for Y, =0 and Y, = 0 and figure 3-2b
shows the case where Y, =1, Y, = 0. For both Y, and Y, equal to 1
the plot is the same as figure 3-2a except reversed so the peak occurs
at approximately v, = -S/N, v, = -S/N. For Y, =0, Y, =1 the reverse

of figure 3-2b occurs.

From these plots, it was decided to pick the noise samples from
a normal distribution with mean B and standard deviation A. This
noise sample v, was then given a sign opposite to that of the PCM

word bit to which it was added. This simple scheme approximates to
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some degree the plots in figure 3-2, yet can be accomplished in the
computer simulation with a minimum of program complexity and extra

running time.

Denoting the weighting of each sample by G, we have

ff f f
=2 Y _ an _ _n
£ £of 1
Yn nfY'y nly
+
since f_ = f_. The conditional distribution of n given Y is a normal

Y 'Y
distribution centered at plus or minus B, depending on whether Yip is

positive or negative. Taking v.p as the value of the noise sample before

the sign is assigned, then

+ ﬁnm 1 (1r_ )?
tn Iy 'II [l o A eXp'{' 2A? }

i=1r=1
and
2
n m > ex 2
_ T
G-l 11 (v -B)?
i=1p=1_1 exp { - —r
2A%
2mA
m n m n
2 (1-A%) ¥ Tv, -2B X X v,
:Anm ox mnB exp r=11=: ir r=1i=1 ir
PY ZAz 2AZ
(3-13)

The best value of A and B were determined for each p and S/N by trial
simulations on the computer. The use of this scheme of importance
sampling gave a reduction of the number of sample sets required for a

specified accuracy by a factor of up to 4.

The computer program for the optimal demodulator simulation is
discussed in Table A-3-2 of Appendix III. The results of the simula-

tion are discussed in the next chapter.



CHAPTER 4

OPTIMAL DEMODULATOR PERFORMANCE

The quantization error for 3 and 6-bit data is developed in
Appendix I. Correlation coefficients for Butterworth data were also
determined in this Appendix for 1 % (6-bit) dataand 10% (3-bit) data
(see Table A-1-1). Based on these correlation coefficients, forn = 2
(two words) it was decided to run the Monte Carlo simulation of the
optimal demodulators on the digital computer for correlation coeffi-
cients of .95, .98, and .995 for 6-bit words and p's of .9, .95, and
.98 for 3-bit words. S/N's starting at .707 and going up to those that
gave MAE's or RMSE's near the quantization error were used, since
the performance is limited by the quantization error. This meant
going up to a S/N of 2. 83 for 6-bit words and a S/N of 2.0 for 3-bit
words.

Some data was also run off for the three word case (n = 3), how-
ever due to the very long running time on the computer for this pro-
gram, this was only done for 3-bit words. Two runs were made for

each S/N, at correlation coefficients of .95 and .98.

For comparison, the MAE and RMSE for the optimal demodulators
was computed for the case where only one word was used in the de-
modulation process (n = 1), for the same S/N's used in the two and
three word case. These values were also used to estimate the de-
modulator performance for p = 1, as discussed in the third paragraph

below.

There was a necessary compromise between the desired accuracy
of the results and the available computer time. Although the simula-

tion was done on the University of Michigan IBM 7090 Computer

29
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System, a comparatively high speed computer, for feasible running
times on the computer it was necessary to limit the accuracy to having
the estimate of two standard deviations (equations 2-15 and 2-18) be
less than 10% of the estimated value of the MAE and MSE. Since the
MAE and MSE have an asymptotically normal distribution', we will
then have a 95% confidence level that the true result is within 10% of
the estimated value. This was slipped to around 20% for a S/N of
2.83 due to the extremely large number of iterations required. The

required computer times are given in Table A-4-8 of Appendix IV.

The optimal demodulator results for the 1, 2, and 3 word cases
are given in Tables A-4-2a, A-4-3a, and A-4-4a of Appendix IV. In-
cluded in these tables are the number of iterations required (N) and
the values of A and B where importance sampling was used. The
values of 2& are given for the MﬁE and R.IVfSE (for the RlVfSE, Z{r\MgE
was used to compute the high and low values of the RIVfSE and the
largest deviation from the RIVfSE was considered as ZGRMSE) The re-
sults (MAE RM%E 28) are normalized by dividing by the peak-to-peak

signal (63 for 6-bit words, 7 for 3-bit words).

For p =1, equation 1-13 reduces to

n
I (klz(t)) = Ks(z) £ . E’XPJL Z S‘ 2 Z1ry.] (k)r th

l’lI"lT i=1

since fY(Zl s ey ij"l ,» Kk, 2j+1 s e s zn) equals zero unless all its argu-

ments are identical. This is equivalent to the expression obtained for
the one word case (n = 1) with irzlz)l Zir substituted for er’ or an averag-
ing of the received PCM words. For n = 2, there is therefore a
quadrupling of the apparent signal power, while, due to the independ-

ence of the additive noise, the noise power is increased only by 2.

T This is the essence of the central limit theorem of probability theory
[C1].
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This means a power savings of 3 db when two received words are
averaged. For n = 3 the power savings is 3 or 4.77db. This allows
us to plot the p = 1, n = 2, line 3db to the left of the n = 1, optimal
demodulation line on plots of the MAE or RMSE against the S/N in db.
Then =3, p =1, line is, by the same reasoning, 4.77 db to the left of

the n = 1 line on these plots.

It is also convenient for comparison purposes to plot the per-
formance of present day PCM demodulators that use bit-by-bit corre-
lation of the received waveforms with the known signal waveforms
g1(t) and g,(t) (or f,(t) and f,{t) in the general case (see Appendix II))
to determine the estimation of the transmitted bit, Qir. For this type
of demodulator, the probability of an error in a bit is equal to the
probability that the integral of the channel noise over the bit time is
greater than and of opposite sign to the integral of the signal. By the
reasoning of Chapter 3, this is equivalent to the probability that a noise
sample from a normal (0, 1) distribution is larger than +S/N but with
the opposite sign, values of which can be found from standard statisti-
cal tables since there is an equal probability that the transmitted bit
is equal to a plus or minus S/N. The probability of a certain size
error is then found by summing the product of the probability of each
different combination of bit errors that will give that size error and
the probability that the necessary signal was transmitted, over all
possible combinations that give this size error. The MAE (or MSE) is
then the sum of the probability of an error of size i times i (or i% for
the MSE) for all i. The computer program to do this is given in Table
A-3-1 of Appendix III and the results for both 3-bit and 6-bit words are
given in Table A-4-1 of Appendix IV.

These results of the computer simulation for the three optimal
demodulators are plotted on figures 4-1 through 4-9 vs. the S/N in db.
The M_//X\E and RNfSE are normalized by the peak-to-peak (P-P) signal.
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Figures 4-1 through 4-6 show the normalized MA\E and Rl\/fSE for 6-bit
words for each of the three optimal demodulators. The results for bit-
by-bit demodulation are also shown on these plots. Figure 4.7 shows
comparison of the MXE and Rl\/fSE of the three optimal demodulators
for p = .98. Figure 4.8 and 4.9 show the MAE and RMSE of the mini-
mum MAE demodulator and the minimum MSE demodulator respec-
tively for 3-bit words. In addition to the bit-by-bit demodulation re-
sults, the results for three words (n = 3) are shown. The quantization

error is also shown on all these graphs as a reference level.

It is evident fromthese graphs that the minimum Pe and minimum
MAE demodulators perform similarly, while the performance of the
minimum MSE demodulator has a somewhat different behavior. As
pointed out before, the minimum Pe and MAE demodu}\ators can only
give discrete (i.e., a possible value of Y,) values of Y,, while the
minimum MSE demodulator gives continuous values of {}z . Also, a
comparison of figures 4-3 and 4-8 and figures 4-6 and 4-9 shows that
the performance of the 3-bit optimal demodulators is quite similar to
the 6-bit optimal demodulators, close enough to use less expensive (in
terms of computer time) 3-bit Monte Carlo simulations to predict

trends in 6-bit (and longer) optimal demodulators.

It is also evident from these graphs that for high correlation co-
efficients, the optimal demodulators give a performance approaching
the p =1 line for the number of words considered. Improvement in
performance is possible by considering more words in each demodula-
tion, but from equation 1-13 it is obvious that an increase in n will
greatly increase the demodulation time. In the simulation programs,
an increase in n from 2 to 3 increased the computer running time by a

factor of around four (see Table A-4-8 of Appendix IV).

Although we have been discussing PCM demodulation when the

system parameters (word size, S/N, etc.) are fixed, the system
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designer can use the performance results of the optimal demodulators
in designing the system he needs. For example, let us fix the maximum

transmitter power, the noise power, and the word time, T If we go

from 6-bit words to 3-bit words, the S/N is increased by 3ng since
each bit is transmitted twice as long with 3-bit words. Let us further
assume that the sampling rates are such that the expected correlation
coefficient between adjacent data samples will be .95. For a compari-
son of the optimal 6-bit 2-word system with the optimal 2 and 3 -word
3-bit systems figure 4-10 results, where the abscissa is the 6-bit S/N
in db and the values are normalized by 2™ 5o that the RMSE comparison
is exact. The 6-bit system S/N needed for a demodulation RMSE equal
to the quantization error of the 3-bit system is 5.3 db, while the two-
word optimal 3-bit system needs a (€-bit) S/N of 2.7 db, and the three-
word 3 -bit optimal system, 1.2db. So, as long as the RMSE is speci-
fied at or above the 3-bit quantization error, the 3-bit system requires
less transmitter power to obtain this RMSE. Of course, if the RMSE
is specified lower than the 3-bit quantization error, then a larger num-
ber of bits per word must be used. The system designer would also
compare 4 and 5-bit systems with the 6-bit system if the RMSE is

specified between the 3-bit and 6-bit quantization errors.

Any discussion of the performance of the optimal demodulators
would be incomplete without reference to their bias and robustness.
These properties of the three optimal demodulators were estimated
with a Monte Carlo simulation for the 2 word case. Trends to other

values of n should be obvious.

For all of the three optimal demodulators, the expected value of
‘5?2 over all possible values of Y, is equal to the mean value of Y,, so
the demodulators are unbiased. However, for each particular value of
Y,, there is a bias in the demodulators which will be a function of the

signal-to-noise ratio and the correlation coefficient between words.
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To accomplish the Monte Carlo simulation which determines this bias,
the computer program for the optimal demodulator simulation (Table
A-3-2, Appendix III) was modified so that the desired value of Y, is
read in and Y, is selected from the proper conditional distribution based
onY,. ’)?2 is then found for each of the three optimal demodulators and
averaged over N iterations. The program was additionally modified to
give an estimate of the variance of the estimate of the average 92.

Since the demodulators are symmetrical about the mean value of Y,,

no values of Y, higher than m, were used in the simulation. Plots for
values greater than my,
2™ -1 - Y,. The results of this simulation are given in Tables A-4-2b,

A A
are obtained by plotting 2™ - E(Y,) opposite

A-4-3b, and A-4-4b of Appendix IV for correlation coefficients of .95
and .995 for 6-bit words, and .9 and .95 for 3-bit words.

Figure 4-11 shows this bias for the 6-bit, minimum MAE demodu-
lator, when p = .95, figure 4-12 for the 6-bit minimum MSE demodula-
tor for p = .95, and figure 4-13 for the 3-bit minimum MSE demodula-
tor for a p of .95. Examination of figures 4-12 and 4-13 again shows
that 3-bit demodulator simulations can be used to accurately predict

trends in 6-bit and larger optimal demodulators.

There are other types of bias that may be considered. For ex-
ample, one may be interested in the demodulator bias when the same
signal is transmitted each time, i.e., Y, =Y, = -.. = Yn' It would be
expected that there would be somewhat less bias than that shown in
figures 4-11 through 4-13, and the bias in this case could easily be

evaluated by means of a Monte Carlo simulation.

To estimate the robustness of the optimal demodulators, the ori-
ginal optimal demodulator program was modified to read in two values
each of the S/N and p, an actual S/N and p to be used in generating the
received waveforms, z, , anda demodulator value of S/N and p to be

A
used in the demodulation to get Y,. The program had to be further
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confidence level of < 3.5.
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Monte Carlo results are shown with dashed lines and have a 95%
confidence level of < 3.5,
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Monte Carlo results are shown with dashed lines and have a 95%
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modified to use equations 2-13a and 2-16a since the computer values of

fY lz(klz(t)) are no longer the true values for use in equations 2-13b

]
and 2-16b. Since the accuracy was decreased by this last change, only

3-bit data was run to estimate the robustness about the p = .95 line of
optimal demodulation. The results for the three optimal demodulators
are given in Tables A-4-2c, A-4-3¢, and A-4-4c of Appendix IV. The
MAAE robustness of the minimum MAE demodulator and the RMASE ro-
bustness of the minimum MSE demodulator are shown on figure 4-14,
referenced to the optimal demodulator curves from figures 4-8 and 4-9
forn =2, p=.95. As can be seen from this figure, the optimal de-
modulators are quite robust even though the S/N may be off as much as

3 db and the value of p may be off as far as .9 or .98.

Equations 1-1, 1-2, 1-3 and 1-13 which determine the three opti-
mal demodulators show that these demodulators would be quite complex
and expensive to build. Also, due to the large number of operations in
equation 1-13, on-line demodulation will be impossible until much
faster computer systems are available, particularly for values of n
greater than 1. Several suboptimal demodulators that take advantage
of the high correlation between data samples, yet are faster and less
expensive to build than the optimal demodulators, are discussed in the

next chapter.
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CHAPTER 5

SUBOPTIMAL PCM DEMODULATION

Considerable improvement in binary PCM demodulation is pos-
sible by the use of the optimal demodulators discussed in the first four
chapters, and this improvement increases with the number of words
(n) considered at one time in the demodulation process. However, as
pointed out in Chapter 4, the optimal demodulators are very complex
and expensive to build. For the practical case of 6-bit words, the
storage of fY(Yl s e ey Yn) requires space for 64" numbers. For two

words this is 4096, for 3 words, 262, 144. Without storage of f the

Y}
number of calculations required for the optimal demodulators becomes
prohibitively large. Consequently, the optimal demodulators are im-

practical for n > 2, and are practical for n = 2 only when a large digi-

tal computer is available.

It should be pointed out here that this impracticability of the opti-
mal demodulators does not make the results of the first four chapters
useless. The optimal demodulator results give us the limit of possible
improvement of binary PCM demodulation when n words, with specified
correlation, are considered in the demodulation process and thus are
the yardsticks by which we measure future improvements. The optimal
demodulators also give some insight into suboptimal demodulation

schemes, as will be seen in this chapter.

The results of the optimal demodulators show that taking advant-
age of the statistical dependence between nearby PCM words will give
improved demodulation when the correlation between these words is
large. Since the optimal demodulators are rather impracticable, it is
natural to look for some simple suboptimal schemes of using this high

correlation between nearby words to improve the demodulation process.

50
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Three such schemes are considered and analyzed below.

Smith [S2] suggested the use of f (k|z.(t), Y;,..., Y, ), the

leij j j-1
conditional probability of the quantized value, Yj’ given zj(t) and
Y., ..., Yj—l’ in place of fY [z(klz(t))’ where Qi would be used for Y,
j

since Yi is not available in the demodulator. This scheme will be re-
ferred to as ""Smith's Suboptimal Demodulator' in all that follows. For

this demodulator

A A
o, & A ST TRREIS SN REXC)
f kiz(t), Y.,...,Y. ) =
- A A
¥l v i S NEIURE YRR S
A A A A A
f t s e ey (k R SR § 3 s e Y,
zj'Y(Zj( )IYI YJ Y ’Y IQI YJ—I) Y(Yl YJ-l)
= X A
ij'Y(zj(t)lYl, ...,Yj_l)fY(Ql,...,Yj_l)
f k)f k v v
ZJIY(zj(t)' ) Yj,Y( lY,, ...,Yj-l)
fz.(zj(t))
J
A
since zj(t) is not a function of {}1 s e Yj-l . By the arguments of

Chapter 1, equation 1-13 then reduces to

A .
fYIZY(k’ZJ(t), 91 ERE A Yj"l) - K4(Z) exp{— Z S‘ erJ(k)I‘dtJL
j ] nr-=i
B
A A 1
~fyj!Y(k]Y1, ...,Yj_l) (5-1)

This is equivalent to the one-word optimal demodulator, with

(k|91’ e {Z\’j_l) substituted for fY(k). The values of f could

Y|Y

be precalculated and stored, but the same storage problems that were

Y.lY
j

discussed in the first paragraph of this chapter exist for j > 2. A

better method would be to calculate each value of f as it is needed,

Y. lY
since, as discussed in Chapter 3, it is given approxlmately by
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2
A 1 k -
YIY(lel""’Y‘-1) o — exp{-i—w—m)}
J 2w o
where ¢ is a function of crY and the correlation coefficients between the

data samples, and m is a function of m_,, the p's, and 91 s s 9

Y’ j-r°
Equation 5-1 then becomes
f, 1 Aklz (1), ¢ V. ) 2K (2) b S
Z. 3 15 « o o3 . 5zexp7
leij j j-1 O re JI‘ i(k)r
B
2
. dt - -‘%—2@— (5-2)

Equation 5-2 and the expressions for m and o, along with equations 1-1,
1-2, and 1-3, then specify the three suboptimal demodulators proposed

by Smith.

The standard deviation, o, can be precalculated and stored based
on the p's. The only effect then on Smith's suboptimal demodulator of
an increase in the number (j) of words considered is in the calculation
of m. Consequently, as j increases, the complexity of this suboptimal

demodulator changes very little.

Since S? is different for the three versions of this demodulator,
only one was Lnalyzed, Smith's suboptimal demodulator corresponding
to the minimum MSE demodulator. A Monte Carlo simulation of this
demodulator for the two word, 3-bit word case was run. For this case

equation 5-2 becomes

(k|z2(t), Yl) = K5 (2) exp{ f.? §z2ryz(k)rdt - LK m)

f
YZIZZ n r=1 J

(5-3)
and A
m=mY(l -p) +pY,

(5-4)
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Equation 1-3 is rewritten as

v, - kz:,okazlzzYl(klzz(t),s?l) (5-5)
In the Monte Carlo simulation, S?l is not available until one demodula-
tion has been accomplished, and to insure that the demodulation process
has progressed far enough for initial effects to be smoothed out, four
successive demodulations were simulated for each iteration. The esti-
mators used were by neceséity those specified by equations 2-13a and
2-16a. The computer program for Smith's suboptimal demodulator is

given in Table A-3-3 of Appendix III.

Two values of p were run, .9 and .95. The results are given in
Table A-4-5 of Appendix IV and are plotted on figure 5-1. As can be
seen from this figure, the results for p = .9 were better than for p =.95,
particularly at the higher S/N's. Some test runs at p's higher than .95
and lower than .9 were run to substantiate this, and it was found that
the performance did deteriorate for high p, but that for p's smaller
than .9 the trend reversed and the performance also got worse. Some
insight into this phenomenon can be gained by considering the combined
form of equations 5-3 and 5-4,

A2
A 2 (k-my(1-p)-pY))
(kIZ Y ) =Kg (Z) exp _‘—Z ZryY (k)rdt - 3 3
2 Y1) =K = 26 2051 - )

f
YZIZZYI n r=1

B
(5-6)
When p is close to 1, the term 1 - p? in the denominator of the negative
part of the exponent tends to drive the exponential to 0 unless k is close
to ’)?1 , thus magnifying any errors in previous demodulations. For low
p, the first term in the exponent becomes dominant, and the use of S?l

A
has little effect on Y,.

Based on the unpromising results on figure 5-1, no further
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simulation of Smith's suboptimal demodulator was run. Considering
more words in each demodulation would give some improvement, but it

is doubtful that the improvement would be significant.

The second suboptimal demodulator considered incorporates a
demodulation scheme suggested by Professor L. L. Rauch. In "Rauch's
suboptimal demodulator' a weighted average over n words of individual
bits is correlated with the reference signals g, (t) and g,(t) (f,(t) and
f,(t) in the general case) to determine the estimate of that bit. In

equation form

= t et oot
G1r ,Tg‘ g (t) (erzlr er er LA an)dt
B
(5-7)

= + oo+ R o
Gzr S‘ gz(t)(wlrzlr er er Wnr an)dt
TB

A g1(t) if Gir > Gy
Vip " (5-8)

where r corresponds to the rth bit. The demodulator always estimates
t
the r h bit of the center word of the sequence of n words, i.e., n= 2j-1,

n

and the weightings must sumto 1, i.e., X Wi T I, r=1,...,m.
1=1

Although the main advantage of this demodulator is its simplicity,
even for large n, the performance evaluation of this demodulator by a
Monte Carlo simulation proved unwieldly. The large number of Gaus-
sian random variables that must be generated for large n requires con-
siderable computer time, and the simulation must first determine the
best set of weightings, W o by trial and error before the performance
can be evaluated. Here the direct calculation of the optimal weightings

and then the MAE and RMSE appears to be the best approach.

The calculations were made for five words (n = 5), with the third
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word being estimated (j = 3). Words number 2 and 4 were assumed to
have a correlation coefficient of p;, with the third word. Words 1 and 5
were assumed to have a correlation coefficient of p,; with the third
word, and a correlation coefficient of p,, with the 2nd and 4th words

respectively. For this case
£ Y1, Y,, Y3, Yy, Y5) =fY(Yl,Yz|Y3,Y4,Y5)fY(Y3,Y4;Y5)

= (Y1, Yo, | Y5) £ (Y3, Yy, Y5 )

=fY(Y1 » Y2, Y3) fY(Y3’ Y4, Ys)
fY(Y3)

The correlation coefficients between words 1 and 4 (and words 2 and 5),
P14, and between words 1 and 5, p;5, are fixed by the above assumptions
and could be determined by the same methods which were used in Chap-
ter 3 for the three word case. The computer program first computes the
probability that a certain sequence of signal bits was transmitted in the
r it position, denoted by PBS, , £ =1,..., 25 . These values are
used to compute the optimal weightings®, W, and the probability that
rth bit is in error, denoted by PBEr, Using the PBEr's, the probability
of an error of a magnitude of k is calculated (denoted by Pk) and this is
used to compute the MAE and RMSE. The computer program to do this
is discussed in Appendix III and is given in Table A-3-4 of that appendix.

The computation was done for 3-bit words, and for three sets of
correlation coefficients ranging from very high to medium. For six bit
words, computation of PBS!Zr requires an excessive amount of computer
time, as can be seen by considering the computer program in Appendix

III. The computation of PBSH requires the computation of fY(Y" Y, Y3),

T The computer program (Appendix III) was set up to select the set of
weightings for a particular bit that minimizes the probability of an
error in that bit. This will not in general give the set of weightings
that will minimize either the MAE or the MSE.
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which is too large to store for m = 6, and therefore, must be recom-
puted each time it is used. Also, in moving from 3 to 6-bit words, the
number of operations to get each PBSZr goes from 4% to 32%, resulting
in too large an increase in required computer time. However, it
should be noted that the bit-error probabilities for the 3 bits in 3-bit
words are the same as the bit-error probabilities for the first three
bits of €-bit words since the PBS's are the same. To get some idea of
the 6-bit word performance of Rauch's suboptimal demodulator, bit-
error probabilities were assumed for the 4th, 5th, and 6th bit. PBE,
was taken to be the same as with no averaging (i.e., wyp = 1), and PBE,
and PBE; were interpolated linearly between PBE; and PBE,. Using
these assumed bit-error probabilities, the MAE and RMSE were cal-
culated for 6-bit data for the same three sets of correlation coefficients
as were used for the 3-bit data. Also, the robustness of Rauch's de-
modulator was determined for 3-bit words by running the demodulator
at the weightings for other S/N's and p's than the values set in the pro-
gram.

The computer results for Rauch's suboptimal demodulator are
given in Table A-4-6 of Appendix IV. These results are also shown on
figures 5-2 and 5-3 (3-bit), figure 5-4 (6-bit) and figure 5-5 (robust-
ness). For reference, the p,, = p;3 = 1.0 line is shown 7 db to the left
of the one-word, bit-by-bit demodulator line, and the results of the
minimum MAE or MSE demodulator for p=1, andn =1, 2, and 3 are
shown also. As can be seen from these figures, this suboptimal de-
modulator gives much improved performance over the present day (one-
word, bit-by-bit) demodulator, particularly for high values of p,, and
p13 and low values of S/N. In fact, for p;, = .995and p,3 = .99 the
performance of Rauch's demodulator is close to or better than the per-
formance of the corresponding optimal 2-~word demodulator. It should
be noted that even for very high correlation coefficients the performance
is considerably poorer than for p = 1.0, but this should be expected for

suboptimal demodulation schemes.
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RMSE + P-P Signal
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A look at the optimal weightings, W in Table A-4-6a of Ap-
pendix IV shows that the consideration of more than 5 words in the de-
modulation process should give more improvement in the bit-error
probability, particularly at the lower S/N's, higher p's, and for the
first or second bits where the weighting on words 1 and 5 is fairly high.
Along with this, it should be noted that errors in the first bit (and to a
lesser extent, the second and succeeding bits) have the most effect on
the absolute error or square error, so decreasing the probability of an
error in the leading bits can significantly reduce the MAE and RMSE.
Therefore, using more words in each demodulation should give im-

proved demodulator performance.

Figure 5-5 shows that the robustness of this demodulator is quite
good, except where the demodulator S/N is more than 3 db lower than
the actual S/N. This is to be expected since the demodulator is then
weighting words 1, 2, and 4 and 5 heavier than optimal and therefore

increasing the chances of an error.

Forn =1, w . must equal 1, and Rauch's suboptimal demodulator
becomes the present day, bit-by-bit demodulator. In Chapter 4, it was
seen that the optimal, one-word demodulator gave an improvement in
performance over the present day demodulator, particularly at low S/N.

It would be expected that a similar weighting by f_, which is in essence

Y)
what the optimal, one-word demodulator does, would improve the per-
formance of Rauch's suboptimal demodulator for n> 1. This reason-
ing led to the third suboptimal demodulator that will be considered,

which can be described as follows. Let

. w_z t---4+w, oz, +..o.+w oz (5-9)
jr 1r1ir jr “jr nr nr

and

m
h(k]|z(t)) = Ke(z) exp{;%— 2 jryj(k)rdt}fy(m (5-10)
n r=l

H
T
B
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Then the counterpart of the minimum MSE demodulator is given by

m
1

A 2_-
Y. = 2, khik|z(t) (5-11)
J k=1

The use of equations 1-1 and 1-2 with h replacing fY lz would give the

counterparts of the minimum Pe and minimum MAE demodulators.
However, only the demodulator corresponding to the minimum MSE de-

modulator (equation 5-11) is analyzed here.

A Monte Carlo simulation was used to evaluate the performance of
suboptimal demodulator number three, where the weightings, W, had
been determined in the evaluation of Rauch's suboptimal demodulator.

It was found that better performance could be obtained if the effects of
fY(k) were weighted in such a way that it would have a smaller effect
when the contribution for the other received words was the greatest in
Hr (i.e., when the w. . were more nearly equal) and the largest effect
when er made the largest contribution to er. In the actual simulation

this was accomplished by weighting H, and equation 5-10 becomes

WT
h(k|z(t)) = K¢(z) exp T ?_:,l S\ery(k)rdt}fY(k) (5-12)
n TB
where WT is the weighting factor. The best weighting factor was de-
termined approximately by trial and error Monte Carlo simulations.
The weighting factor that gave the least RMSE was not the weighting
that gave the least MAE, in fact the two were considerably different
with the weighting factor for the least MAE being larger. The weight-
ing factors in Table A-4-7 are those that gave the best RMSE perform-
ance, since the version of suboptimal number 3 analyzed was the one
corresponding to the minimum MSE demodulator. It should also be

noted that the addition of this weighting factor adds one more degree of
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freedom to the demodulator, thereby increasing the complexity and

adding to the robustness problem.

The computer simulation was done for five (n = 5) 3-bit words,
with the same assumptions on the correlation coefficients as were used

in the analysis of Rauch's suboptimal demodulator. For this case

%k k sk
fX(Xl » X3 X3)

3 (XTIX;:: X3) =

X |x,, x fx(x=2-, x¥)

and for Gaussian data this becomes
f (x7[x3, x¥) = = exp {_(____Z___xik - )’
XIIXZ’X3 2: 3 A’ZTT . 20

where

1 - 2 _ - 2
v o \[ 2py,(l n P13) - PI3
Y 1 - pf;

2
- P12l -pi3) _ pr2-p P12(1 - p13) \_x
m__(l_ li_pzl3 + 12 1%2 mY+ 12 13 XZ

12 1 - p 1 -p5

2

_ <P12 - P13 )x*

1 - o2 3
P12

x5 is selected from a normal (m

v O'Y) distribution. xj and x, are then
selected from a normal distribution with mean mY(l - p12) * p12X3 and
standard deviation o NT - pZ . x, and x¥ are then selected from a
normal distribution with mean m and standard deviation ¢ as given in
the last two equations above (for xf , xf replaces x:; in the expression
for m). 93 is formed from equations 5-12 and 5-11. The estimate of
the MAE and MSE and the estimates of the variances of these estimates
are made using equations 2-13a, 2-14, 2-15, 2-16a, 2-17, and 2-18,
The computer program for the simulation of this demodulator is given

in Table A-3-5 of Appendix IIl and the results of the simulation for the
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same sets of p.,'s and p13's as were used with Rauch's demodulator are

given in Table A-4-7 of Appendix IV and are plotted on figure 5-6.

Going from bit-by-bit demodulation as in Rauch's demodulator to
word demodulation as in suboptimal number 3 requires a substantial
increase in complexity in the demodulator. Rewriting the exponential

term in equation 5-12 as

WT <&

exp < —— Z= W S‘ Z. yj(k)rdt+' . -+Wnr§ anyj(k)rdt}
n r=l T T

B B

it can be seen that suboptimal demodulator number 3 requires two cor-

relators whose outputs are | zirgl(t)dt andf zirgz(t)dt. These values
T

are then fed into a small digital computer where they are stored and
used with the previous outputs (already stored in the computer) to form

the needed quantities in equation 5-12 (the values of f_(k) and the wir’s

would be previously stored in the computer). Then S?Yls formed accord-
ing to equation 5~11. Although this demodulator is more complex than
Rauch's demodulator, like Rauch's demodulator the complexity increases
only slightly as n is increased. The user would have to determine if the
added performance justifies the added complexity. The robustness
characteristics should be similar to those of Rauch's demodulator,

with a slight added problem due to the weighting factor.

Figure 5-7 shows a RMSE comparison of the three suboptimal de-
modulator performances. Smith's demodulator has a comparatively
poor performance except at low S/N's. Rauch's demodulator gives
good performance, particularly for high p's. A considerable amount
of added improvement can be had at the price of added complexity over

Rauch's demodulator with suboptimal number three.

For one optimization criteria there is only one possible optimal

demodulator, but there is no such limit on the number of possible
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suboptimal demodulators. Therefore, the three suboptimal schemes
analyzed above do not exhaust the possible suboptimal demodulators
that could be used. However, these suboptimal demodulators do show
that high statistical dependence between nearby data samples can be
used to significantly improve demodulator performance in a practical

way.



CHAPTER 6

CONCLUSIONS AND POSSIBLE EXTENSIONS

In reference S2, Smith showed that high statistical dependence
between PCM data samples could be used in the demodulation process
to reduce the probability of a word error. In the first four chapters of
this dissertation it has been shown that this improvement in the demodu-
lation is more pronounced when more meaningful measures of demodula-
tor performance are considered, and that the demodulators that mini-
mize the mean absolute error or mean square error show the same
improvement as the minimum-error-probability demodulator that

Smith considered.

Chapter 5 points out that high correlation between data samples
can be used suboptimally to significantly improve PCM demodulation.
Although the results are not as good as the optimal demodulators for
the same number of words considered in each demodulation, the com-
plexity of the suboptimal demodulators will not increase to the same
degree as the optimal demodulators when the number of words (n) is
increased. Consequently, two of the suboptimal demodulators investi-
gated were able to use a large number of words easier than the optimal
demodulators could use two words, and therefore get better perform-

ance than the optimal demodulators with less complexity.

All of the results of the first five chapters are restricted by the
three main assumptions made in the introduction, namely, the assump-
tion of Gaussian, bandlimited, white noise, the assumption of independ-
ent additive noise, and the assumption of Gaussian data. Without the

first two assumptions the derivation of the expression for f (k | z(t))

lez
becomes far more complex and may not even be possible. Hence the

analytic description of the optimal demodulators may be very complex

69
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or impossible. This does not necessarily mean that a high statistical
dependence between data samples could not be used to improve the de-
modulation process, but schemes of using this dependence will not be
as obvious. However, if some method of doing this is invented, it may
be possible to evaluate the performance of the demodulator by an appli-
cation of a Monte Carlo simulation on a digital computer similar to that
used in the restrictive case considered in the first five chapters. All
that is necessary is a method of generating signal and noise samples
from the proper distributions and a program that simulates the opera-

tion of the demodulator in discrete time.

As was pointed out in the introduction, the assumption of band-
limited Gaussian noise is a fairly good one. Maintaining this assump-
tion then, the case of multiplicative noise (random bias in the trans-
mitter or the channel) could be analyzed by Monte Carlo methods simply
by forming the proper combination of signal and noise in the computer
before the simulated demodulation. Again, the methods of using high
correlation between data samples in the demodulation process may not
be apparent, but a Monte Carlo simulation may give some insight into
this. Simple suboptimal schemes such as Rauch's demodulation method

may show an improved performance over present day methods.

The assumption of Gaussian data was not used in the derivation of
the expressions for the optimal or suboptimal demodulators, but rather
the data distribution entered into the demodulator description as the
weighting by fY(Yl, cees Yj—1’ k, Yj+1’ cee Yn) or fY(Yl, “es Yj—l’ k) or,
in the case of Rauch's suboptimal demodulator, not at all. Certainly
the specific results of Chapters 4 and 5 are good only for Gaussian data,
but the demodulation schemes (both optimal and suboptimal) should be
equally valid for data from other distributions, and if expressions for
the multivariant probability density function of the data are available,

the specific performance of the demodulators could be obtained by the
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same Monte Carlo simulation (or direct computation in the case of the
present day demodulator and Rauch's suboptimal demodulator) as used

in Chapters 1 through 5.

In addition to extending the analysis of optimal and suboptimal
binary PCM demodulators to other forms of noise and to data from
other than a Gaussian distribution, several other extensions appear

worthwhile,

Although Smith's suboptimal demodulator did not give an improve-
ment in performance worthy of the added complexity over the present
day, bit-by-bit correlation demodulators, this does not mean that the
idea should be abandoned. Some weighting on the influence of 3/1\'1 may
give better results for the case of very high correlation between data
samples. This, however, would result in some added complexity and
the robustness characteristics of the demodulator for changes in p
might not be desirable. Combining Smith's demodulation scheme with
Rauch's scheme is another possibility for improved demodulation.

This is equivalent to substituting (|2, VU s?j_l) for £_(k) in

Ytlz-Y
suboptimal number three. The added complexity over suboptimal
A
number 3 is slight, and for the higher values of S/N (where Y,, .. .,Q

J-1
are very accurate) the improvement in the demodulation may be worth-

while. This could be evaluated with a Monte Carlo simulation as was

done with suboptimal number three.

Improved computation schemes or faster computers would allow
a more accurate determination of the performance (and the optimal
weightings for the last three bits) of Rauch's suboptimal demodulator
for six-bit data. However, the weightings on the first three bits (which
are the same as in the three-bit case) have the most pronounced effect
on the MAE and RMSE, so that approximate results of Chapter 5 should
give a very good indication of the demodulator performance. The im-

provement that could be gained by considering more than 5 words in the
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demodulation with Rauch's demodulator would be a meaningful extension,
but it is doubtful that the direct computation would be feasible due to

the difficulty in evaluating fY(Yl » Y¥,,Y;5,Y,,Ys). However, the amount of
improvement could be evaluated approximately with a Monte Carlo

simulation.

For Gaussian data the probability that g, (t) was transmitted in any
bit position is .5, so weighting by this probability in Rauch's demodu-
lator offers no benefit. However, if the data distribution is skewed,
then weighting Glr and Gzr in equation 5-7 by the probability that
yjr = g, (t) and yjr = g,(t) should improve the demodulation, particularly
for r = 1 or 2 where the improvement has the most effect on the MAE

and RMSE.

The extensions mentioned above may improve the suboptimal de-
modulators discussed in Chapter 5, but the amount of improvement
would not be expected to be substantial. Some entirely new suboptimal
demodulation scheme may be invented that would give good performance
and yet be practical to build, and certainly this possibility should not
be dismissed. However, Rauch's suboptimal demodulator seems to be
the only logical way to take advantage of a high statistical dependence
between nearby data samples when the demodulation is accomplished
bit by bit. And suboptimal number 3 is the logical extension of Rauch's

scheme to word-by-word demodulation.

Up to this point we have not discussed the possibility of the use of
a high correlation between nearby PCM words after one-word bit-by-bit
demodulation. This would allow demodulation with equipment now on
hand and improvement at some later time. This post-demodulation
improvement of the demodulated data could be done in two ways, bit by
bit or word by word. In bit-by-bit demodulation improvement, the de-
modulated bits in a particular bit position would be compared over suc-

cessive words to improve the demodulation of that bit. However, it is
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seen that this is almost equivalent to Rauch's demodulation scheme and
in fact, can do no better than Rauch's demodulator, and therefore offers
nothing very new except the ability to improve the demodulation while
still using present day equipment. In word-by-word post-demodulation
improvement, the demodulated words would be compared in some
manner (and possibly weighted in some way by fY(Yl s ey Yn)) to im-
prove the demodulation of Yj' A simple yet possibly efficient way of
doing this would be to use a weighted average (as in Rauch's demodu-
lator) of the successive demodulated words to determine the new de-
modulated word. The extension of this to a somewhat more complex
but possibly more efficient method would be to then weight (as in sub-
optimal number 3) this weighted average by fY( Yj)' The evaluation of
these schemes of post-demodulation improvement might possibly be
done directly, but in any event could certainly be done by Monte Carlo

methods.

It appears that unless a radically different demodulation scheme
is hit upon the most fruitful extension of this dissertation is in the area

of post-demodulation improvement.



Appendix I

CORRELATION COEFFICIENTS FOR BUTTERWORTH
DATA

mth order Butterworth data is data that results from the passage
of white noise through a Butterworth filter and has an essentially flat
power spectrum out of some break frequency, fI, and beyond fI the roll-
off rate is 6db per octave for first order data, 12 db per octave for

second order data, etc. For mth order Butterworth data, the spectrum

is [M3]
1
2Im
- <fi>
I

where fs is the sampling frequency, McRae and

S(f) =

f

—

Letting x = 27

~

s
Smith [M4] derived the following expressions for p(T), where T = I/fs.

For first order data
p(1) = exp(-x)

For second order data

p(T) =2 exp(—x/'\/—Z) cos(x/'\/E - w/4)

For third order data

p(T) =(1/2) exp(-x) + exp(-x/2) cos (.866x - 7/3)

McRae has tabulated the required sampling rates for various per-
centage errors [M3]. If we specify a sampling rate such that the inter-
polation error does not exceed the quantization error from the coding
of the analog data into PCM, then the required sampling rates are those

from McRae's tables for the quantization error.

If we assume that the quantization error is uniformly distributed

from -1/2to 1/2, i.e.,
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fx) = L "l/2z=x=1/2
0, otherwise

then
©0 1/2
MAE =§lx]f(x) dx = 2§ xdx = %
-0 O
°0 1/2
MSE = S‘Xzf(x) dx S‘ x?dx = liz—
e -1/2

RMSE =N1/12 = 2887
If we normalize the RMSE by the peak-to-peak signal, then

RMSE

I:.m = .04124 for 3-bit words

RMSE

P—:W = ,00458 for 6-bit words

In reference M3, McRae uses the RMSE over the RMS signal to get the
percent error. Assuming sinusoidal data, the RMS signal equals the
peak-to-peak signal divided by 2N2 . Multiplying the above values by
2N2 we have the following normalized errors:

.1167 or about 10% for 3-bit words

.01296 or about 1% for 6-bit words.

Using these values, the sampling rates from reference M3, and the ex-
pressions for p, table A-1-1 was prepared. It gives the correlation
coefficient p;,(1), between adjacent PCM words and the correlation co-

efficient, p;3(7), between PCM words i and i + 2.
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TABLE A-1-1

Correlation Coefficients for Butterworth Data

1% Data (6 bit)

Interpolation

Order of Data Method fs/fI P12(7) P13 (7)
1 Ideal 11500 .99945 .99891
2 Linear 40 .98855 .95756
3 Linear 19 .97311 .89714

10% Data (3 bit)

Interpolation

Order of Data Method fs/fI - P12(7) P13 ()
1 Ideal 125 .95098 .90436
2 Linear 8.1 .79433 . 44942

3 Linear 5.8 . 74757 .28593




Appendix II

GENERALIZATION TO ARBITRARY BIT
WAVEFORMS

Smith [S2] generalizes from equal energy signals with a corre-

lation coefficient of -1 to two arbitrary signals f; (t) and f,(t) as follows.

A "correlation parameter", «, is defined by

2 f(t) £,(t) dt

T TR 2 (n)at
T | 2
B
Let
1
g (t) = E(fl(t) - £,(t))
g(t) = - 3 (B (1) - £,(1)

g,(t) and g,(t) have equal energies and a A of

1 -1
\ = T—Bgrj" g, () g;(1) dt = ;ﬁ;s—zy(fl(t) - f,(1)2dt
T s

Since S? = —TI—S‘ g () at
B TB

1
= o f (f1(t) - £,(1)°dt
Bt

B

we have X = -1.

If the transmitted waveforms are f,(t) and f,(t), then

Zir - fir( b+ nir(t)

If %(fl(t) + f,(t)) is subtracted from zir(t), then

77
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]

1
2t (0 = £, () +n. (8 -5 (f(1) +£,(0)

gir( R nir( t)

and the results of the computer simulation for signals of + S/N apply.
Since this is a reversible linear transformation, the results based on
the S/N for the g(t) waveforms are the same results that we could get
for the original S/N for the f(t) waveforms. The results will still be

optimal for the optimal demodulators due to the linearity of the trans-
formation. The conversion factor is then the square root of the ratio

of the signal power, S?2

¢+ in the f(t) waveforms to the signal power, S‘Zg ,
in the g(t) waveforms. This becomes
—1 1 ) 1/2
i1 2 2
o > TB fT (f1(t) + fz(t))dt
i S B
S 1 2
g T f (£, (t) - £,(1)) " dt
BT
L. B .

or

(S/N)f= "1%3 (S/N)g (A-2-2)

The use of equation A-2-2 allows the application of the results of
Chapters 4 and 5 to any arbitrary bit waveforms used in the binary

PCM transmission.




Appendix III
COMPUTER PROGRAMS

The computer programs were written in FORTRAN II [M2] for the
University of Michigan Executive System, which utilizes an IBM 7090
computer. Because the Michigan Executive System utilizes other com-
pilers which use the same library functions as the FORTRAN compiler,
some of these functions are written without a terminal "F" in FORTRAN.
Examples of this are the "SIN", "EXP'", and "SQRT' functions. Also
the input/output statements used in the programs are necessitated by

the Michigan Executive System's use of off-line cardreaders and printers.

The basic computer programs used are presented in Tables A-3-1
through A-3-5. The comment statements (a '"C" in column 1) give an
explanation of what each part of the program does, which includes the

meaning of the important variable names that are used.

Table A-3-1 shows the program used to compute the MAE and
RMSE for the present day, bit-by-bit, one-word demodulator. The
bit-error probability for each S/N was computed by reading the proba-
bility that a normal (0, 1) random variable is greater than S/N from
standard probability tables. This is then read in as '""PR' in the pro-
gram. This program, as were most of the programs, was written so
that any size words could be used, but for m = 3 the values of fY(k)
(P(I) in the program) were read in (from probability tables), instead of

being computed in the program, for more accuracy.

Table A-3-2 shows the general program for the three optimal de-
modulators, and is generalized for any size words and up to 3 words
(n = 3) used in the demodulation. The results of all three optimal de-
modulators are computed at the same time, since equations 1-1, 1-2

and 1-3 all use the values of fY Iz(klz(t)) (P(I) in the program). The
j
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subroutine for generating Gaussian random numbers was a Michigan
Executive System library function, and was called as RANDND (crY, mY,
RNO), where RNO is the starting number for generating the sequence of
random numbers. For a random start, RNO is set to 0, as was done

in all the programs which used random numbers, The programs that
were used to compute the bias and robustness of the optimal demodulators

are not shown since they are obvious modifications of the program in
Table A-3-2.

Table A-3-3 shows the program which was used to estimate the
performance of Smith's suboptimal demodulator. As was mentioned in
Chapter 5 four demodulations or subiterations were made for each
iteration to insure that the starting effect of not having S?l available was

smoothed out.

Table A-3-4 gives the program which computes the MAE and
RMSE for Rauch's suboptimal demodulator. As was discussed in
Chapter 5, a Monte Carlo simulation was not used. Rather, these per-
formance parameters were computed directly. To compute the proba-
bility of a certain sequence of transmitted bits occurring in the rth bit
of the sequence of transmitted PCM words, denoted by PBSir’ it was
first necessary to compute the probability of a certain sequence of PCM
werds occuring, fY(Y1 Y2, Y3, Y4, Ys), and then add together all the

fY's that would give a certain PBSir' As pointed out in Chapter 5,

E Y1, Yo, Y3)E (Y5, Yy, Y5)
£,4Ys3)

fY(YI,ng Y33 Y4, Y5) =

To get the necessary accuracy in the computation of the PBSir' S,
it was necessary to integrate fx(xl » X;, X3) over the region where each
X, guantizes to the particular value of each Yi' Integration' by Simpson's

1/3 Rule [M1] was used, with the intervals of integration successively

! The program that does the intégration (subprograms CALCI1, CALC?2,
and CALC3 in Table A-3-4) was developed by Capt. Edward G. Preston.
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split until the desired accuracy was reached (EPI in the program) be-
tween successive evaluations. The values of fY(Y3) were read in from
standard probability tables. The optimal weightings, W, . were deter-
mined by computing the bit-error probability (PBEr) for each possible
set of wir's (no finer breakdown of the wir's than .01 was made) and
then selecting the set that gave the smallest PBEr. Using the PBEr’s,
the probability of an error of i was computed, and, as in the program

of Table A-3-1, this was used to compute the MAE and RMSE.

Table A-3-5 gives the program which uses a Monte Carlo simula-
tion to estimate the performance of suboptimal demodulator number 3.
The weightings, W, e from the previous program's results, were read

in and used in this program.

These 5 programs are presented here for the benefit of anyone
who desires to extend the work done in this dissertation. The author
does not claim to be an expert programmer, and there are undoubtedly
many small improvements that could be made in these programs to im-
prove their accuracy and efficiency. It should be noted that some effi-
ciency is lost in the generalization of the programs to a general m (and
n in the optimal demodulator program), but this is more than made up

for the programmer in the time spent in the program preparation.
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‘Table A-3-1. Computer Progr_am, Present Day Demodulator

DIMENSION JC(64,6),P(64),PP(64,6),PW(6),PEL64)

C BYPASSES UNDERFLOW ERROR,

c

2
3

C COMPUTES JC(1,KY=

130

140

151
150

CALL FTRAP

C. SETS CONSTANTS, MMam,SYsoy)XMYsmy,MM1a2

READ INPUT TAPE 7,101,MM,SY,XMY
MM182weMM

MM2aMMY -1
C COMPUTES P(!)=£Y(l).

PS=z0,
DO 2 1=1,MM1
x=!_1 b e e ¢ e b e
POI)EEXP (=«S5#{{XeXMY)/SY)*e2)
PS=PS+P(1]) . B
DO 3 I=1,MM1
P(1)=P(1)/PS
= + S/N.,
D0 130 K=1.mm 1K
JC(LyKy=~1
DO 1621=1,MM2
DO 140 kK=1,MM
JCCI+1,K)=JC(1.,K) o -
DO 150 K=1,MM
N=MM=K+1
JCUI+1,N)SJYC(I+1,N)+Y
IFCJCCI+1,N)) 151,151,150
JCCI#1,N)=1
GO TO 162
JC(l+1,N)am]

162 CONTINUE

C COMPUTES PP(J,K)=SUM OF THE PROBABILITIES THAT THE Y'S WERE
C TRANSMITTED SUCH THAT K BITS IN ERROR WOULD GIVE AN ABSOLUTE
c ERROR oF J.

10
20

DO 4 I=1,MM1

DO 4 K=1,MM

PP(I.K)=°.

po 20 gy=1,MM2

MEMMLia )

NzT+J

Jd=0

DO 10 K=1,MM

JUZJJe (XABSF(JC(1,K)=JC(N,K)))/2

TPPCJaJIIEPP(J,JJ)+P LTI +PIN)

CONTINUE

C SN3S/N,PR=BIT»ERROR PROBRABILITY,XMAEZMAE,XMSE=MSE,

70

READ INPUT TAPE 7,1,PR,SN
XMAE=0,
XMSE=0,
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Table A-3-1 (Continued)

C COMPUTES PE(I)=THE PROBABILITY OF AN ABSOLUTE ERROR OF 1,
C PW(I)=THE PROBABILITY THAT I BlTS ARE IN ERROR,
DO 5 I=1,MM
5 PW(I)=PRww]l#(1,.~PR)*a(MM=1)
DO 6 1=1,MM1
6 PE(I)30,
DO 30 I=1,MM2
30 PECI)ZPEC(])+PP(I,K)*PW(K)
C COMPUTES AND PRINTS XMAE=MAF AND RMSE=RMSE,
Xi=1-1
XMAE=XMAE+X]«PE(Y)
40 XMSEEXMSE+X[+#2¢PE(])
RMSE=SORT (XMSE)
WRITE OUTPUT TAPE 6,50,SN,PR,XMAE,RMSE
C RETURNS TO READ ANOTHER S/N AND PR,
GO TO0 70
i FORMAT(10F10,.7) )
50 FORMAT(2X,4HS/N=F6.4,2X,13HP(BIT ERROR)=F12,7,2X.4HMAE=F12.7,
1 2X,5HRMSE=F12.7)
51 FORMAT¢1KH1)
100 FORMAT(6(2X,14))
101 FORMAT(12,2F8,4)
END
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Table A-3-2. Computer Program, Optimal Demodulators

DIMENSION JC(64,6),ER(3),ERSR(3),ERS(3),ERSS(3),XM(64),XMS(64),
1HT(64.64).N(64).NH(64).SYM(S).X(S).JYT(3).CU(3;6).PHR(64.3).P(641f
1YH(3).HAA(3).H88(3>.ERR(3).SERR(3).501(3).SDZ(3>:0(3)¢PC(3).PCC(3)

€ BYPASSES UNDERF|LOW ERROR, T

CALL FTRAP m

C SETS CONSTANTS, MM=my, NN=n ,MM1=22 ,XMY=m .SY=0o , T
RNO=0, Y Y
RN2=0, T
69 READ INPUT TAPE 7,11,MM,AA,NN

XMM=EMM : ‘ T e

XNN=NN

MM1z24eMM

MM2=MM1 -1

XMM2=MM2

XMY=XMM2/72,

SY=XMY/AA

RSY=10/SY

C COMPUTES JC(I.K)=yH<+ S/N.
po 30 KginMM
30 JC(1,K)=-1
DO 62 1s1,MM2
DO 40 k=1 ,MM
40 JCCI+1,K)=JCC],K)

DO 50 k=1,MM

NzMM=K+1

JCCI+1,N)=JCET+1,N)*t

IF¢(JC(1+1,N)) 51,51,50

51 JC‘I"’11N,=1
GO TO 62
50 JC(I+1,N)=-1
62 CONTINUE
C SETS CONSTANTS., LL=NO,OF ITERATIONS,SN=S/N,RH3p,
C A=0 AND B=IFQOR NOISE SAMPLES,
70 READ INPUT TAPE 7,13,LLs»SN,RH
IF¢LL) 69,69,68
68 CONTINUE

READ INPUT TAPE 7,14,A,8B

A2=1'.A*i2

A3=1,/(2.%A%n2)

GlzA+* (NNeMMIWEXP (AINXMMAXNN*Bwe2)

RRSC=1,0/(1,0=RHww2)

RRSCR=SQRT (RH#RRSC)

RRSC2=0,5%RRSC

C 'COMPUTES WT(I,M)y=f_ (I,M) ,WW(I)=f (1) .W(I1)=1/f (1),
c Y Y Y
GO TO (74,73,73),NN
73 DO 72 1=1,MM1
Y=1-1
X=(Y=*XMY)*RSY
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Table A-3-2 (Continued)

XM(1)sX*RRSCR
72 XMS(1)=Xe#2#RRSC2

DO 75 1=1,MM14
DO 75 m=1,MM1

75 WTCToMYSEXP (XMCI)RXM(M)=XMSC])=XMS(M))

74 DO 76 1=1,MM1

y=1-1
WOT)SEXP (oS5#((Y=XMY)#RSY)#e2)

76 WW(Idsl./W(])Y

C XMsm AND SYM=¢ FOR x DISTRIRUTION,
XM(1)sxMY
SYM({1)=SY
SYM(2)=SY/SQRY (RRSC)
SYM(3)=SYM(2)
A9=XMYe(1,=RH)
Do 71 1=1,3
ERC(1)=0,
ERSR(1)=0,
ERS(1)=D.

71 ERSS(]1)=0,

C INITIATES LL ITERATIONS
DO 500 L1=1,LL
C FORMS Y, , " ,Yq. X{1)=X;, Y(?)‘xlt X(3)3xX; ,JYT(1)8Y, ,JYT(2)=Y, ,
c
C JYT(3)=Y;,
c
ussso0,
Usssso,

DO 140 I=1,NN
X(1)=RANDND(O,,1,,RNO)SYM(L1Y+XM(])
XM(I+1)=A9+RHwX (1)
JYTCLY=X(])+,.5
IFCJYT(1)) 99,130,100
99 JYT(1)=0

GO TO 130

100 IFCJYTC(1)»MM2) 130,130,110

110 JYT(1)zMM2

130 J=UYT(1)+1

c
C DUE To MODIFIED NOISE DISTRIBUTION,
DO 140 k=1,MM
US=RANDND(O.,1 .+, RN2)wA+B
IFCJCCJrK)) 136,136,138
136 GU(I,K)=US~SN
Go T0 139
138 CU(I,K)2SN-US -
139  USS=USS+US
140 USSSE=USSS+USe2
GZGL%EXP ((A2+#USSS=2.+B*USS)+A3)
c
C COMPUTES f !(klzun aND 14 PURCIIL) =
c %

C FORMS Zin AND WEIGHTING, US=vIKn CU(I.K)'HK:a GSWEIGHTING

_§5 I

r-rerI(L) S/N.
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Table A-2-3 (Continued)

PPR1=70,=MAXIMUM PWR(1,1)-S/N AND IS USED TO AVOID VERY
SMALL NUMRERS IN THE COMPUTER AND IMPROVE ACCURACY,
P(I)-ijlélldtn s YH1=Y,

QO Qo

PPR1=20,0
DO 170 1=1,MM1
DO 144 | =1,NM
144 PWR(I1,1)=0.
DO 160 K=1,MM
IFCJC(I,K)) 145,145,150
145 DO 146 L=1,NN
146 PHR(I,L)=PWRCI.LY=CUtL,K)
GO TO 160
150 DO 151 | =1,NN
151 PWR(I,L)=PWReI,LI+CU(L,K)
160 CONTINUE
IF(PPR1=-PWR(I1,1)) 17n,170,16F
165 PPR1=PUWR(1,1)
170 CONTINUF
PPR1=70,~PPR1#SN
D0 171 1=1,MM1
171 PCOI)=WW(I)*EXP (PWR(],1)*SN+PPR1)
GO TO (180,172,172),NN
172 DO 174 1=1,MM1
PF’:O.
DO 173 u=1,MM1
173 PP=PP+WT(J),I)*EXP (PWR(J,])*SN)
174 P(1)SP(])«W(])+PP
GO TO (¢180,180,175),NN
175 DO 177 1=1,MM1
PP=0,
DO 176 J=1,MM1
176 PP=PPaWT(1,JY+EXP (PWR(J, 3)#SN)
177 P(1)=P(]1)*u(1)#PP
180 PP=0,
PS=0.
pDC 181 1=1,MmM1
PS=PS+P(1])
IF(P(1)Y-PP) 181,181,182
182 PP=P(])
YH(1)s1-1
181 CONTINUE
DO 499 1=1,MM1
499 P(1)=P(1)/PS
C COMPUTES YH(2)=9,.
PPP=0,
DO 190 1=1,MM1
PPPePPP+P (1)
IF(PPP-,.5) 190,191,191
190 CONTINUE
191 VYH(2)=1-1
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Table A-3-2 (Continued)

A
C COMPUTES YH(3)=Y; ,

192
COMPUTES AE, OR AE, AND SE, OR SE, AND CUMULATIVE SUNMS,

aacaaaaa

501

502

YH(S)'U.

DO 192 1=1,MM1
D2=1-1
YHE3)=YH(3)«N2*P (1)

L L
E 1):13321( ])k ERSC(I) k2=l( J)k
RSR = 2 = 2
ERSR(1) kE:l(AEj)k +ERSS(1) k)'::l(SEj)k

PARTICULAR DEMONULATOR,

bo 502 1=1,3

HAA(I):O.

HBR(I):O'

DO 501 k=1,MM1

XKzK=1

XX1=ARSF (XK=YH(]))
HAACT) =HAA (D) +XX1#P (K)
HBR(I)zHRB(I)+(XX1a*2)2P(K)
HAACI)=KAA(L)*G
HBR(I1)=HRB(1)*G
ERCII=ERCID+HAA(T)
ERS(I)=ERS([)+HBR(I1)
ERSR(I)=ERSREI)I+HAA (1) wen?2
FRSS(1)=FRSS(I)+HBB(1)#x2

C STOPS ITERATIONS AND PRINTS HEADINGS,

500

c
c
C
c
c
C

COMPUTES
SERR(1)=M§EI ,Sn2(1)=26

A
PCC(I1)= % FOR 20,4

CONTINUE

WRITE OUTPUT TAPE 6,5

XtLs=LiL

WRITE QUTPUT TAPE 6,20,NN
WRITE OUTPUT TAPE6,6,MM

WRITE NnUTPUT TAPF6,3

WRITE QUTPUT TAPE6,2,SN,RH,LL
WRITE QUTPUT TAPE 6,12,8,4A
WRITE QUTPUT TAPE6,3

MSE
|

EI

Do 201 1=1,3

ERRCIM=ER(I)/XLL

SERR(IY=ERSC(I)/XLL

AND PRINTS RESULTS. ERR(n:M’AEI ,SD1(11228 A

A IA
oQ(I):RMSEI 2PC(1Y2% FOR 28

» 1 REFERS TO THE

MAE

A
hﬂAEﬁ

SD1(I)=2.#SART ((ERSR(I)/XLL-ERR(I)**2)/XLL)
SD2(1)=2.+SQRT ((ERSS(1)/XLL=SERR(I)*#2)/Xx|L)

QCI)=SQRT (SERR(I))
PCCI)=SDI(I)/FERR(1)*100,
PCC(1)=SD2(1)/SERR(I)+100,




203
204

205
206

207

208
209
201

Table A-3-2 (Continued

GO 70(203,204,205),1

WRITE OUTPUT TAPE 6,15

GO TO 206

WRITE OUTPUT TAPE 6,17

GO TO 206

WRITE OUTPUT TAPE 6,18

WRITE OUTPUT TAPE 6,46,ERR(I),SDL(1),SERR(1),SD2¢(1),0(1)
ERR(I)=ERR(1)+SD1¢(1)

Q(I)=SORY (SERR(I)sSp2(1))

WRITE QUTPUT TAPE 6,21,ERR(1),0(1)
ERR(I)=ERR(I)=SD1(1)e2,
SERR(I)=SERR(]1)»SD2(1)

IF(SERR(1)) 207,207,208

0(1)=0,

GO 70 209

0(1)3SERT (SFRR(I))

WRITE OUTPUT TAPE 6,21,ERR(1),0Q(1)
WRITE QUTPUT TAPE 6,19,PC(1),PCC(I)

C RETURNS To READ ANOTHER SET OF DATaA,

2

6
11
12
i3
14
i5
16

17
is
19
20
21

3
5

GO T0 70

FORMAT (3HSN®F5,3,2X,4HRHO=F5,3,2X,15HN0, ITERAT]ONS314)

FORMAT (1HO)

FORMAT (1H1)

FORMAT(2X,12,1X,9HBIT WORDS)

FORMAT(12,F12,7,11)

FORMAT (35HMODIFIED NOISE DISTRIBUTION MEAN®F8,4,2X,3HSD=F8,4)
FORMAT (14,2F8,4) '

FORMAT (8F10,6)

FORMAT (23HMINIMUM PE DEMODULATOR)

FORMAT (4HMAE=F12.7,2X,4H2SDsF12,7,2X,4HMSE®F12,7,2X,4H2SDaF12,7,
1 5%,5HRMSE=2F12,7) ’
FORMAT(23HMINIMUM MAE DEMODULATOR)

FORMAT (23HMINIMUM MSE DEMODULATOR)

FORMAT (BHPERCENT=2F8,4,25X,84PERCENT=F8,4)

FORMAT(22HOPTIMAL DEMODULATION= ,I1,6H WORDS) - C o
FORMAT(4X,F12,7,63XsF12,7)

END ‘ C e s
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cew. . ... Table A-3-3. Computer Program, Smith's.Demodulator

DIMENSION SU(6),ASE(4),0(4),JC(64,6),V3(3,6),SDMSE(4),P(64)
" DIMENSION AES(4),SDMAE(4),PCC(4),PC(3),X82(564),SES(4)Y,5EES(4)
DIMENSION Z(5)
C BYPASSES UNDERFLOW ERROR, = — 7~ —— om0/
CALL FTRAP
C SETS CGONSTANTS, MMSm.MM132 » XMTBmY.SYlf
RNO=O,
RNLaD.~ = e
400 READ INPUT TAPE 7 11, MMa AA
T MM1EZweMM T coo T T T
XMMisMMY
e XMMEMM e e e —
MM2aMM1 -1
" MM3IsMMel T o ' T T
XMM23MM2
C XMYEXMM2/72, ' S
SY=XMY/AA
RSY=4i,/SY ’ T LT o
C COMPUTES Jc(l, K)SyH( S/N.
DO 30 Kk=1,MM o ) ’ T
30 JCti,K)="1
DO 62 1=1,MM2 S i ) ' T
DO 40 ksi,MM :
40 JCCI+1,K¥aJC(],.K} T ’ h T mr e
po 50 K=1 MM
NEMMeKed o oo e
JC(I*L,NYZJCC]«1,N)~1
IFCJCCL+1,N))Y B1,51,50 ~ ~ = 77 T T e e
51 JC(I«1,N)=1
80 TO 62 o e e e s
50 JCCI+1,N)a-]
62 CONTINUE ' i
C COMPUTES xS2(1)si/f_(1).

DO 63 1=1,MM1 Yoo o T T
Yziel
" 63 XS2(1) s 52 (((Y=XMY)*RSY)en2) T

C SETS CONSTANTS., LL=ND, OF ITERAT]ONS, SN-S/N RHlPu oRHHlpu
70 READ INPUTY TAPE 7,13:(L»SN,RH,RHH T
IF (LL) 400,400,708
‘701 JCT=0 o o o o ' T
FzRMwe2
Ex1,=F . e . e I
SYMISY.SQRT tE)
TESL1./E T "“—
D¢l yeRH)wXMY 7 -
TERSYww2% ,5¢E T ’ ) T
B0 74 1=1,4 «
T OAESUlys0, T T ' oo
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SES(1)=0. Table A-3-3 (Continued)

71 SESS(1)=0,
XLLsLL
C INITIATES LL ITERATIONS
DO 500 (=1,LL
C GENERATES THE NEEDED GAUSSIAN RANDOM NUMBERS
po 600 1=1,4
ZC1)SRANDND(O,,1,,RNO)
DO 600 J=1,MM
600 VS(l,J)sFANDND(O0.,14,RN1)
C SYMizoc AND XM1i=mFOR x DISTRIBUTION.,
SYmi=Sy
XMLi=XMY
C INITIATES 4 SUBITERATIONS,
Do 500 M=1,4
C COMPUTES X= x, AND Y2=Y,.
X=SYMiwZ (M) exXM1

JEX+1,5

IFeJ=1) 100,131,111
100 Js1

GO TO 131
111 IF(J=-MM1) 131,131,120
120 J=MmMl
131 Y2=)-1

C COMPUTES SUtK)=z z__ .
DO 150 k=1,MM 2K
US=yS(M,K)
IF(JCCU,K)) 444,144,146
144 SU(K)=US=-SN
GO TO 150
146 SUCK)zsUS+SN
150 CONT;NUE .
PUT =
Cc COMPg=§. P(1) Yzlzz
DO 170 1=1,MML
uUs=o,
DO 160 K=1,MM
IF(JC(1,K)) 154,154,156
154 Us=y=Sy(K)
GO TO 160
156 U=sP+SU(K)
160 CONTINUE
GO TO (162,163,163,163,163),M
162 V=XS2(1)~U=SN
GO TO 169
163 Xl=i=-%
VE(XleXNH)*#2+T={JaSN
169 P(I1)I3EXP (=V)
170 PS=PSe+P(1)
PO 180 1=1,MM1

A
Yl(IIZz,Yl).
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Table A-3-3 (Continued)

180 P(1)=P(])/PS
C COMPUTES yHe{,
YH=U|
DO 190 1=1,MM1
N2=1=1
190 YH=YH+D2*P(])
L L .
COMPUTES AND STORES AEStM)=, F (AE,), ,SES(M)I= T (AE,) .
SESS(M) = E (AE, ) .
k=1 k
SETS o0, AND My FOR THE NEXT SUBITERATION,
H=ABSF(Y2=YH)
AES(M)=AES(MI+H
Hswew?2
SES(M)=SES(M)+H
SESS(M)=SESS(M)+H#w2
XNHsD+RH*YH
SYM1=SYM
500 XM1=DeRH*X A ’
C COMPUTES AND PRINTS AES(1)=MAE. ,ASE(])=MSE .SDMAE(!):Z@BAA

M=SUBITERAT]ON,

aaaoaaaQon

1 I E
c 1
SDMS Yazd = YA R 25 A
g MSE(1 'zﬁwéEfPCC“’ % FOR zﬁwﬁE;C("' % FO 2ﬁMSE1

[ Q(l’=RH§Er 1 REFERS TO THE SUBITERATION,
no 201 1=1,4
AES(1)=zAES(I)/XLL
ASF(I)=SESCI)/XLL
SDMAE(1)22.#SQRT ((ASE(IY=AES(])»*2)/XLL)
PCC(l1)=SDMAE(I)/AES(1)ein0,
SDMSE(1)=2.#SQRT ((SESSCI)/XLL=ASECI)**2)/XLL)
RC1)=SNRT (ASE(1))
201 PC(1)=SDMSEC(1)/ASE(1)#100,
WRITE QUTPUT TAPE 6,5
WRITE OUTPUT TAPE 6,6,MM
WRITE OQUTPUT TAPE 6,3
WRITE QUTPUT TAPE 6,7
WRITE OUTPUT TAPE6,17,SN,RH,LL
WRITE OUTPUT TAPE 6,14
DO 202 1=1,4
202 WRITE QUTPUT TAPE 6,15,1,AES(I),SDMAE(]),PCCt]I),ASE(]),
1 SDMSE(!1),PC(I1).0(1)
C RETURNS TO READ ANOTHER SET OF pATA.
Go To 70
FORMAT(616)
FORMAT(3HSN=F5,3,2X,4HRHO=F5,3,2X,6HRIH0132F5,3,,2X,
1 15HNO. ITERATIONS=2]4)
FORMAT(1HD)
FORMAT (8E14,6)
FORMAT (1H1)

\V W~ LV o




N o

11
13
14

15
16
17
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Table A-3-3 (Continued)

FORMAT (2X,12,1X,9HBIT WORDS)

FORMAT (28HSUBOPTIMAL DEMODULATOR NO, 2) o o
FORMAY (2X,12,4X,4HMSE=F12,7,2X,49H25D=F12, 7.2X.5HRMSEIF12 7)
FORMAT (3X,8HPERCENT=F12,7) -
FORMAT(12,F12,7,12)

FORMAT(14,3F8,4)

FORMAT (2X,3HNO,210X, 3HMAE,10X,3H2SD,10X,3H0/0, 10X.3HMSE010X;
1 3H28D,10X,3H0/0,10X,4HRMSE)

FORMAT(2X,12,6X,7F13,7)

FORMAT (20HSUBOPY, DEMOD, NO. 1) o
FORMAT( 3HSN=zF5,3,2X,4HRHO=F5,3,2X,15HNO, ITERATIONSIIJ)
END ‘




93

Table A-3-4. Computer Program, Rauch's Demodulator

DIMENSION XS(64),JC(64,6),NN(2,32),11(5),PS(32,6),PM(2),PSS(6)

1W(32,5),XXSt64),WT(512),PE(6),PER(63),P(777)

C BYPASSES UNDERFLOW ERROR,

c

c

C COMPUTES AND STORES P(l)=

c

C
c

CALL FTRAP

COMPUTES W(l,K)ey s S/N FOR 52817 WORDS,

30

40

51

50
62

400

444

SETS CONSTANTS, XL IM3 ACCURACY LIMIT,
C RHsp); ,RHHEP;3 .XMYsmY.SYWY,MHIm,MHitz .

405

DO 30 x=1,5
W(i1,K)=-1,

DO 62 1=1,31

DO 40 x=z1,5
W(lel,K)=W(],K)

DO 50 K=1.5

NzgeK
w(!‘l;N)‘“‘I*inN,*in
XF(H(I013N)) 51051050
W(l+l,N)= 1,

GO YO 62
W(lel,N)Eml,
CONTINUE

[\
3|~

B=SQURY (1./6.2832)w,01
P(389)=,5

P(390)=,496

X=,015

DO 400 1=391,777
PCI)BP(I=1)-R*EXP (= ,5«Xow2)
XeXe,01

CONTINUE

DO 441 1=1,388

N=778-1

P(1)=1,~P(N)

READ INPUT TAPE 7,40%,XS

READ INPUT TAPE 7,402,RH,RHK;XMY,SY MM
READ INPUT TAPE 7,950,XLIM

MMi=2eeMM

MM28MM1 /2

MM3ZMM =1

C COMPUTES JUC(l.,K)= yIK%-S/N.

70

Do 70 K=1‘MM
JC(1,K)ze"1

DO 72 1=1,MM3
DO B0 k=1,MM

XS (DI L/E (D),



8T JCCTeL, K uCe,KY T

81
e

94

. Table A-3-4 (Continued) .

DO 81 K=1,MM

~ NaMMeKer 1 77 T
JCCI+L,N)aJyCtI+1,N)+¢
TIFCJC(1e1,N)) 82,82,81
JCCI*4,N)z 1

- GOT0 72 o - o

JCCI*1,N)end
"CONTINUE .

Fali,"RHwe2

"§EL /P
SZaSYex2

YSESZwF
SXsSZeEwS
”31'395/52
S2=»,5/YS
SB'R,’/SXI
Fis(l,~RH)eXMY

" F2uaRHw (1, #RHMW)*S
F3s(RHen2eRHK)*S

T F4sXMYwe(1,F24F3)

c

EP3aX| IM
EP2YERPI#10,
EP1sEP2w10,

c SETS CONSTANTS FOR THE lNTEGRATlON.
- TTERL W2 wRH*#2# (1, sRHH)aRHH*e2

C' COMPUTES WT(MX)ef (K,Js1) BY INTEGRATION OFf tZ,¥5X), ~——

"CTCALCL1 CALLS ON THE INTEGRATION SUBPROGRAM (AT END OF PROGRAMY

DO 110 K=1,MM1

T XKaK

IxXKny,»XMY
TDO 110 Jsi,MMY”
XJaJ
YEXJml, sXMY
DO 110 1‘1 K
T Xlsl
XEX]»Ll,=XMY
MX2ZK®644+ 4801072

WT(MX)= CALCL(X,Y, ZaSi.S? $3, EPl EPZ.EPS.F& F2078.74 RH)
—110 CONTINUE
C COMPLETES COMPUTATION OF NT(MX)'f (1,JaK) AND PRINTS RESULTS.

D0 111 I=1,MM3
Nzlsl

‘D0 111 Umi,MM1
DO 1131 K=N,MM1

TTMXEIR644+JeBeKwT 2

MYSKw64+ JeBs1272

AL ONTIMX)EWTCMYY

WRITE OUTPUT TAPE 6,101,WT
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Table A-3-4 (Continued)
c COMPUTES AND PRINTS PS(1, K)lPBS
DO ATY KELIHM
N=zy
TR
DO 415 1=1,MN%
TTIFCJC(T, K)) 412,415,413
_412 NN(1,N)=?
'NINtI et e
GO TO 415
AL NNeZ2, MY T o
MaMal
405 CONTINUE ~ — e
DO 450 1=1,16 -
PStI,Ky=D, ™ e T
DO 416 KK=y,5
416 TI(KKY= Bayli,KKyed,8 ~———
DO 450 Mist, MM2
Lefldiy T o
JLzNN(L . ML)
DO 450 MZal,MM2 -~~~ o e e imemn e

L=11(2)
J2aNN(L,M2) T T e
DO 450 M3=1,MM2
Leilesy L e
J3=NN(L,M3)
MXSJ1864402686 3072 - = -rmrer mens
AZWT(MX)eXS(J3)
DO 450 MA®i,MM2  ~~ T e
Le1lt4) -
TJASNN(L,M4Y T T s
DO 450 M5=1,MM2
—— iy e
J5ENN(L,M5) -
TMXeJ 3w6dsgdeBagSa7z T o
PSCIsK)EPSCI,K)#ARHT (MX) A
450 CONTINUE [ —
PSS(K)=0, .
DO 455 101,16 B
NNNE33.]
- PS(NNN,K)SPS(I,KY ~— -~ - o
PSS(K)=PSS(K)¢PS(1,K)+PS(NNN,K) _
455 CONTINUE R

DO 460 1s%, 32
460" PS(I,KYaPS(I,K)/PSS(K) ~ = e
WRITE OUTPUT TAPE 6, 101.,(PSCI, K)ol#lc32)
470  CONTINUE™
C __COMPUTES XXS(I)tf (l)o
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. , . Table A-3-4 (Continued)

N2 (ABSF(Z2Z~ XMY)~.5)ISYt100 0389 5
XXS(1)sP(N)
XXS(MM1)=XXS(1)
~ XBEXXS(L1Y ~ - - o e
DO 830 !s2, MM2
124 3L} o T T
Nl(ABSF(ZZaXMY)-.S)ISYtinO +«389,85
JEZMMlatel : i T
XXS(1)=P(N)=XB
T XXSCJ)EXXS(])Y T e
XBeXBeXXS(])
830 CONTINUE .
C READS [N S/N AND SPACES PRINTER, A BLANK CARD RETURNS
C 'THE PROGRAM TO STATEMENT 40%, T e ———
399 READ INPUT TAPE 7,401%,SN
"7 IF(SN) 405,405,406 ) Tt T
406 CONTINUE
WRITE OUTPUT TAPE 6,411 s LT
C COHPUTES AND PRINTS uuw1-wnq ETC,,THE BEST WEIGHTINGS

C AND PE(K)= THE PROBABILITY OF AN ERROR IN THME KTH BIT,

N AB=SN+400, : S,
DO 500 K=1,MM
PM(2)=s100, o e
w3e1,02
DO 740 Ls=1,414 S e e e
W3zW3=,02
W2s(1,-W3)e,5 e
Wi=0,
N=(L*1)/2 . e e
PMt1)=100,
DO 700 LL=1,N e e e e
SWzAB/SQRT (2,%(Wiee24W2w2)+sW3wn2)

PP=0, T T T e

DO 600 1=1,16

Xz COHCT L) #NET L5 0N e (W(T,2)eW(,4))0N24H(T,3)eWSIOSHWW (T, I)

J=X+389,5

IFEJ) 611,611,612 e
611 =1

GO YO 60D oTrmrTmTmmm

612 IF(J®777) 600,600,621
621 J=777 e e
600 PP=PP«PS(], K)tP(J’

PPePPe2, : S

IF(PP=PM(1)) 710,710,720
710 PM(1)=pP ' . B
WW3IEW3
.. wwz'wa - . - . e e e m e mn n i e ——.
WWizwWl
’zc - szwa.. 01 - e B LI VP P ——
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Table A-3-4 (Continued)

WizWie, 01

700 CONTINUE
IF(PM(1)=PM(2)) 730,730,740

730 PM(2)=pM(1)
WWWlzWWl
WWH2EWW2
WHWIZWWS

740 CONTINUE
PE(K)=zPM(2)

500 WRITE QUTPUT TAPE 6,401, WWWl,WWW2,WWN3
WRITE OUTPUT TAPE 6,101,PE

C COMPUTES AND PRINTS PER(J)= THE PROBABILITY OF AN ERROR OF J,
DO 820 J=1,MM3
pER(J)=00
MEZMMie= )
DO 820 1=1,M
NeleJ
PR=10
DO 810 Kk=1,MM
XJE(XARSF(JCUI,KK)mJC(NIKK)))/2

810 PRz(PE(KK)*XJ#(1l,eXJ)e(1.~PE(KK)))#PR
PER(J)=PERCJ)I+PR* (XXS(1)+XXSIN))

820 CONTINUE
WRITE OUTPUT TAPE 6,101,PER '

C COMPUTES AND PRINTS XMAE=MAE AND RMSE=RMSE, THEN RETURNS |

C TO READ A NEW S/N,
XMAE=0,
XMSE=0,
No 805 1=1,MM3
X1=1
XMAE=XMAE+X1#PER(])

805 XMSE=SXMSE +PER(I)#X]ew? T s
RMSE=SQRT(XMSE)
WRITE NUTPUT TAPE 6,3
WRITE OQUTPUT TAPE 6,2,SNsRH,RHH,XMAE ,RMSE
GO T0 399

e FORMAT C1X,F6,4,2X,F6,4,2X,F6,4,4X,F10,7,2X,F10,7)

3 FORMAT (1X,3HS/N,5X,3HRHO,5X,5HRHO13,6X,3HMAE, 9X, $HRMSE)

5 FORMAT (1H1)

101 FORMAT(8E14,7)

401 FORMAT(¢ 8F10,5)

402 FORMAT(4F10,5,12)

404 FORMAT(10110)

411 FORMAT(1HOD)

950 FORMAT(5E14,7)
END
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Table A-3-4 (Continued)

~ THESE 3 SUBPROGRAMS EVALUATE THE TRIPPLE INTEGRAL
BY SIMPSON'S 1/3 RULE,
THE INTEGRATION IS DONE AS T

CALC3(Y,Z)= ‘rfx[yz(XIY' Z)dX, e e
CALC2(Z)® ffylz(YIZ)-CALcs(Y, z)dy, e

‘CALCL=f fz(Z) CALC 2 (2)dZ. : . e e

FUNCT;ON CALCL(X,Y,2,51,52,83,EPL,EP2,EP3,FL,F2,F3 P, RH) — ——
A=Z=,

B27+,8 » . R .
Cs EXP (Sl*l"a’*CALCZ(X.Y.A052i53159205P30thrzorsaFQolH’
n= EXP (S1#B#w2)#CALC2(X,Y,B,52,53,EP2,8P3,F1,F2:r 3 P R
SUMz=CeD

EPSsEPY .
PSUMé=0,

Do 250 1=1,8 C e e
HEl,/(2,%%])

La2#e].1 e e e
SUM23PSUM4w,5

TSUM4s=p, S I
DO 230 N=i,L,2

ZNaN S
Es A®ZNwH

Ez EXP (S19E##2)#CALC2(X,Y,E»52,S3,EP2,BP3,FL1,F2,FP3iFa RHNY
TSUM4xTSUM4+4, «E

PSUM4AsPSUM4«TSUM4 - S —
IF¢I=1) 236,236,240

Z1=(H/3,)*(SUMsSUM24TSUMY) S
GO TO 250

Z22(H/3,.)* (SUM+SUM2+TSUME) : - e e
DIFA=Z22-21

IF(ABSF(DIFA)~EPS) 2%6,246,246 : S
2i=nZ72

CONTINUE o T T e
CONTINUE

CALCL2Z2 e
RETURN

END S e

FUNCTION CALC2(X,Y»2,52,S3.EP2,EPS,FL1,F2,F3,F4,RN)
A=Y905 © et it o vt
9=Y¢.5

XMZaF1+RKHeZ | 1 e
Cs EXP (S2'(A7XMZ)tt2)tCALCS(X;A.Z.SS;!PS.FQ.FS,FJ)

D= EXP (S2¢(BrXMZ)*#2)wCALCI(X:B,2:83,8P3,F2,F3,F4) —




230

236
240

246
250
256

a3

EPSSEPT . I , e
- RSUMERE
S ML /(2 ey T

- Em ReZNWwH T ‘ B
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Table A 3-4 (Contmued)

SUMaCaD

DO 250 1=1,8

La2ww]ag

SUM2=RSUM4w,8 T e T

TSUM4'DQ ) .
DO 230 N=2L,L,2 ~ T T T e
IN=N

E= EXP (SZt(E-XMZ)t-Z)tCALCS(X E.ZaSS.EPS 72 FS Fa)
TSUMAsTSUM4+4 ,¢E
PSUM4:PSUM40TSUM4

IF(1=1) 236,236,240 L e

Zim(H/3,)* (SUM+SUM2+TSUM4)

GO TO 250 C e e
223 (H/3, )% (SUM+SUM2+TSUM4)

DIFA®Z2+21 : e e
IF(ABSF(DIFAY»EPS) 256,246,246

21=72 : e
CONTINUE

CONTINUE

CA|.C2x72

RETURN

END

FUNCTION CALC3(X,Y,2,S3,EP3,F2,F3,r74)
XMYZSF4aF3wZaF2eY

Az¥=,5 el
BzX+,5

Cz EXP (S3e(AnXMYZ)##2) T
Ds EXP (S3#(BmXMYZ)ew2)

EPS=EP3 ) CoTTTT
SUMECeD

PSliM4=0, ST T
Do 250 1=1,8

H21,7¢2.%01) R R
22sw]al .
SUM2=PSUM4w /5

TSUM4s0,

DO230 N=1,L,2 : R — AR

IN=N
Ez A+ZNwH ‘ R L
Ez EXP (SIe(EeXMYZ)ww2)

"TSUMA4sTSUM44 , *E o o T T

PSUM4aPSUM4+TSUM4
TF{I=1) 236,236,240 E - . _




236
240
246

250
256
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Table A-3-4 (Continued)

21=(H/3, )% (SUM+SUM2+TSUM4)
GO TO 250

222 (H/3, )« (SUM+SUM2+TSUM4 )
DIFA=Z2-71
IF(ABSF(DIFA)Y=EPS) 256,246,246
Z1=72

CONTINUE

CONTINUE

CALC3=72

RETURN

END
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Table A-3-5, Computer Program, Subopt1ma1 Number 3

DIHENSION JC64,6),CU(5,6),CV(6) o JCD(B),285),VS(5,6),JYT(5)
- DIMENSTON WI(6),W2(6),W3(6),P(64),XS2(64)
C BYPASSES UNDERFL.OW _ERROR,
T CALL FTRAP : U
C SETS CDNSTANTS. MMthMH1=2 nXMY- SYzo_,
e e S
RN1s0, _
400 READ”TNPUT'TAPE'7.11;HM;KA”“””"' Tt
MMy 22¢«MM
T XMMisMME T S o T
XMMEMM
CMM2aMMiWl L e me s o
MM3IEMMe+1
CXMM2EMM2 T o e
XMYEXMM2/2,
~ SYzXMY/ZAA T - o T
RSYel,/SY
€ T COMPUTES Jc(t, K):yIK S/N.” T e -
po 30 k=i, MM
’”30'"’JC(1.K):91 - S
DO 40 k=i ,MM ~ — T ) T T T
40 JC(I*1,K)3JCt],K)
‘DO 50 kszi,MM o o
NSMMeK+l
JCUTeL,NYBJCLI#T,N)ey ™ 77 mom o e
IFCJCCTI+1,N)) 51.51.50
BL T UC(ISL,NIEL e e
GO TO 62
90 JC(I+1,N)sel o o -
62 CONTINUE
'C COMPUTES XSZ(!)nilf (n, T T T e e
DO 63 131,MMY
Y=ie1 . : i —
63 XS2(I) s S5 (((Y=XMY)*RSY)es2)
C READS N INPUT DATA AND SETS CONSTANTS, “SNuS/N,[L®NO, OF
C ITERATIONS,RH= py, +RHH® D13 ,Wi(1)=swW 1, ETC,,PER® WEIGHTING
€
C FACTOR, SYM AND_SYN ARE THEo's FOR THE x DISTR!BUT[DN.
70 READ INPUT TAPE 7,13,LL,SN,RH,RHH T T T
IF (LL)Y 400,400, 701
701 CONTINUE ) T T
READ INPUT TAPE 7, 23 Wi:.W2, HS
READ INPUT TAPE 7,10,PER - ST T T
XLLwlL
FaRWe&w? T T T T T T T s e s
Ez=y,f )
T SYMaSY#SORY (BY T o o ) TToTmm o
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Table A-3-5 (Continued)

Es1,/E
C=(F=RHH)*E
B=RH® (4 ,~RHH)»E
AS(1,~R4C)*XMY
Ds(1l,=RH)*xXMY
SYNSSY#SORT ((1,22,*Fw(1l, RHH)=RNH*®2)E)
T=RSYew2e SeE
ER=0-
ERR=z0,
ERS=0,
VER=0,
VERS=0.
VERSS=0,
C INITIATES LL ITERATIONS
DO 500 (=1,LL
C GENERATES THE NEEDED GAUSS]AN RANDOM NUMBERS.
Do 600 1=1,5
Z(1)=RANDND(O0,,1.,RND)
DO 600 J=1,MM
600 VS(I‘J’=RANDND(0!01IIRN1,
C COMPUTES x1ex,, ETC..XN!H&-
c
X3=SY*Z(3)+»XMY
XM=D*RHwX3
X2=SYMwZ(2) XM
X4=SYMwZ (4) XM
XNzA+BeX2wC*X3
X1zSYNwZ(1)YeXN
XNzAeBuX4nCeX3
XS5=SYNwZ(5)+XN
C COMPUTES JYT(I)=YI AND CU(I:K)=ZH<.
JYT(1)=x1+,5
JYT(2)=X2+.5
JYT(3)=X3+,5
JYT(4)=X4+,5
JYT(5)=X5+,5
DO 140 1:=1,5
IF (JYT(1)) 99,130,300
99 JYT(1)=0
GO 70 130
300 IF (JYT(I)-MM2) 130,130,110
110 JyT(l)=MM2
130 JU=gyT(1)+t
DO 140 K=1,MM
US=sVS(1,K) '
IF¢JC(U,K)) 136,136,138
136 CUCI,K)=US=SN
GO TO 140
138 CUCI,K)=US+SN
140 CONTINUE
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- Table A-3-5 (Continued)

C “COMPUTES B(Y)# WI|z(t))

R— C’VTK"*Hjﬁ' .
DO 207 K=4i,MM

CVIK)SWLI(K)#(CUCL,K)aCU(B,K))&WNZ(RIWITUTZ, Ky CUTH, KV SWSTKY*CUTT K

1
~ 207 CONTINUgE -~ 777 I T

Y3eJYT(3)

PS=D; - e

Do 220 1=4, MML

uso, o

DO 218 K=1,MM

IFCJC(TLK)Y) 214,214,216

214 U=y=CVY(K)

GO TO 218

216 UsmyuCV (k)

218 CONTINUE
VEU*SNwPER«XS2(1)
PC(1)SEXP (V)

220 PS=PSeP(1)

DO 230 1=1,MM1
230 P(1)=P(1)/pPS
C COMPUTES YHe V..
YH=0, J
DO 240 1=1,MM1
D2=]w3
240 VYH=zYHeD2eP(1]) o -

c L
C COMPUTES AND STORES VER-QE(AEh)k s VERS®
(o] =1
" ER1=ABSF(Y3mYH) o ' T

FR2aER1we2

VERsVER<ER1

VERSSVERS+ER?

VERSSsVERSS+FER2w#2

C_ STOPS ITERATIONS AND SPACES PRINTER,

500 CONTINUE '
WRITE OUTPUT TAPE 6,5

COMPUTES AND PRINTS VERsMAE,vSD122f: -

g MA
g VERS=M8E, vsoz=2oDASE.Pc32= % FOR 2UBASE.
~VERSVER/XLL
VERS®VERS/XLL

VSD132,4SQRT ((VERS=VER##2)/XLL)
VSD232,#SQRT ((VERSS/XLL-VERS##2)/XLL)
RMSEaSQRT (VERS)

PC312VSD1/VER#100,
PC322ySD2/VERS#100,
WRITE OUTPUT TAPE 6,3
" WRITE OUTPUT TAPE 6,3 -
WRITE OUTPUT TAPE 6,21
WRTTE OUTPUT TAPE 6,6, MM
WRITE OUTPUT TAPE 6,2,SN,RH,RHH,LL

E0PC31' % FOR~ 20-

RS S S
Z, (SE1), 4VERSST I (SE,

AE
-
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Table A-3-5 (Continued)

WRITE OQUTPUT TAPE 6,22,PER

WRITE QUTPUT TAPE 6,24,W1,W2,W3

WRITE OUTPUT TAPE 6,3

WRITE OUTPUT TAPE 6,14

WRITE OUTPUT TAPE 6,15, VER,VSD1,PC31,VERS,VSD2,PC32,RMSE

RETURNS TO READ ANOTHER SET OF DATA,

GO T0 70

FORMAT(616)
roaMAT(3H5N=r5.3.2x.4HRHo=r5.3.2x,6HRH013-r5.3,.2x,

i 15HNO. ITERATIONS=14)

FORMAT(1HO)

FORMAT(8E14,6)

FORMAT (1H1)

FORMAT(2X,12,1X,9HBIT WORDS)

FORMAT(28HSUROPTIMAL DEMODULATOR NO, 2)
FORMAtczx.12,4x,4HMss=r12.7.2x.4HZSD=F12.7.2!.5HRMSEuF12.7>
FORMAT (3X,8HPERCENT=F12,7)

FORMAT(10F10,4)

FORMAT(I2,F12,7,12)

FORMAT(14,3F8,4)

FORMAT( 10Xs IHMAE, 10X, 3H2SD,10X,3H0/0,10X, 3HMSE, 10X,
1 3H2SN,10X,3H0/0,10X,4HRMSE)

FORMAT(5X,7F13,7)

FORMAT (20HSUBOPT, DEMOD, NO, 1) ‘

FORMAT ( 3HSN=F5,3,2X,4HRHO=F5,3,2X, 15HNO, ITERATIONS=14)
FORMAT(8F10,4)

FORMAT (28HSUROPTIMAL DEMODULATOR NO, 3)
FORMAT(3X,10MWEIGHTING=F10,6)

FORMAT(6F2,2)

FORMAT(6(3IX,F3.2))

FORMAT(15HEXECUTION TIME=14,9HMINUTES, F4,1,7HSECONDS)
END




Appendix IV

COMPUTATION RESULTS

Tables A-4-1 through A-4-7 give the computational results for

the optimal and suboptimal demodulators. The following symbols,

although used in the main body of this dissertation, are repeated here

for convenience.

n:

S/N:

P12:

P13 :

Z

w. !
ir

WT:

number of PCM words considered at any one time in the
demodulation process.

the number of bits in each PCM word.
the RMS signal-to-noise ratio.

the correlation coefficient between adjacent data samples,
x, and x

1 i+t
the correlation coefficient between alternating data samples,

x¥ and x° .
i i+2

the number of iterations used in the Monte Carlo simulation.

the standard deviation of the modified noise distribution
where importance sampling was used.

the mean of the modified noise distribution for importance
sampling.

the weighting factor for the rth bit of the ith word in Rauch's
suboptimal demodulator.

the weighting used in suboptimal demodulator number 3.

All normalized (abbreviated as "Nor." in the tables) values are nor-

malized by dividing by the peak-to-peak signal.

Table A-4-8 gives a summary of the computation times required

on the University of Michigan IBM 7090 Computer to generate the data
in Tables A-4-1 through A-4-7,

105
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TABLE A-4-1

Data, Present Day Demodulators (Bit-by-bit Correlation)

S/N

o)
B8

.707
1.0
1.414
2.0
2.83
.707
.0
.414
.0
.83
.55

e e e e e e R
TONONONONONW W W W W

W NN

NOR. MAE

.1976

. 1400
.07403
.02231
.002296
L1716
L1231

. 06600
.02000
.002056
.0001081

NOR. RMSE

. 2986
. 2491
.1796
.09802
.03138
. 2550
. 2130
. 1537
.0838
.02684
.007920
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TABLE A-4-5

Data, Smith's Suboptimal Demodulator

SIN p; N
.707 .9 400
1.0 .9 800
1.414 .9 1600
2.0 .9 4000
.707 .95 400
1.0 .95 800
1.414 .95 1600
2.0 .95 4000

Nor. ANQr. Nor. ANor,
MAE Zﬁw%E RM%E 25 P MSE
11871  .01346  .17947 .01725
083787 .008309 .14431 01208
038046 .004312 .094252 .01070
010996 .001544 050035 007292
11547  .01332  .17626 .01683
089814 009548 16217 .01318
042898 .005247 .11336 .01161
011548 001766 .057026 .007859




Data, Rauch's Suboptimal Demodulator

TABLE A-4-6
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a. Optimal Weighting Factors, m =3 (w_=w_, w_ =w )
iy 2r 5T 1r
§/_1S Piz P13 Wi Wa W3 Wiza Wp2 W3, W3 Wa3 W33
.707 .95 .85 .15 .19 .32 .15 .17 .36 .09 .15 .52
1.0 .95 .85 .12 .18 .40 11 .16 .46 .08 .13 .58
1.414 .95 .85 .09 .14 .52 .08 |13 .58 .04 |11 .70
2.0 .95 .85 .05 .11 .68 .04 .10 .72 .03 .06 .82
2.83 .95 .85 .04 .06 .80 .03 .06 .82 .01 .04 .90
. 707 .98 .95 .17 .20 .26 .16 .19 .30 .11 .19 .40
1.0 .98 .95 .15 .18 .34 .14 .17 .38 .09 .16 .50
1.414 .98 .95 .12 L1500 .46 .10 .15 .50 .07 .13 . 60
2.0 .98 .95 .07 .12 .62 .06 .12 64 .04 .09 .74
2.83 .98 .95 .04 .08 .76 .04 .07 78 .03 .05 .84
.707 .995 .99 .18 21 .22 .17 .20 .26 .15 .19 .32
1.0 .995 .99 17 .20 .26 .17 .18 .30 .14 17 .38
1.414 .995 .99 .14 16 .40 .13 .16 .42 .10 .15 .50
2.0 .995 .99 .09 .13 .5 .09 .12 .58 .06 .12 .64
2.83 .995 .99 .06 .08 .72 .06 08 .72 .04 ,07 .78
b. Performance, m = 3.
n m S/N P12 P13 Nor. MAE Nor. RMSE
5 3 .707 .95 .85 .12610 . 22851
5 3 1.0 .95 .85 .076975 .17501
5 3 1.414 .95 .85 ,036931 .11972
5 3 2.0 .95 .85 .010691 .064111
5 3 2.83 .95 .85 .0010973 .020520
5 3 . 707 .98 .95 10258 .20381
5 3 1.0 .98 .95 .055816 . 14585
5 3 1.414 .98 .95 .024630 .095001
5 3 2.0 .98 .95 0068462 . 049710
5 3 2.83 .98 .95 .00069637 .015845
5 3 L7107 .995 .99 . 080245 . 18122
5 3 1.0 .995 .99 .036012 L11711
5 3 1.414 .995 .99 ,013487 .069558
5 3 2.0 .995 .99 .0034750 .034883
5 3 2.83 .995 .99 .00034044 .010880
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Demodulator

Present Day
Optimal
Optimal
Optimal
Optimal
Optimal
Smith's

No. 3

Rauch's
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TABLE A-4-8

Computation Times

Execution Time

Total Execution

for 100 Iterations Time

5.0 sec.

1.66 sec. 1 min.. 22.3 sec.
3.0 sec. 34 min. 1.8 sec.!
11.8 sec. 22 min. 14.2 sec.
11.7 sec. 7 min. 58,2 sec.
41.9 sec. 130 min. 22.6 sec.?
5.0 sec. 11 min. 20,3 sec.
3.2 sec. 17 min. 57.4 sec.
21 min. 8.3 sec.?

Total: 4 hr. 6 min. 30.1 sec.

Includes bias and robustness runs.
2Includes bias and robustness runs and run for m = 6 with assumed

PBE 's.
r
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